В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
maksimlymar200
maksimlymar200
10.02.2020 09:34 •  Математика

Найдите координаты центра окружности и её радиус , если она задана уравнением x²+2x+y²-6y+6=0 , если можно , то с объяснением

Показать ответ
Ответ:
суперМозг777
суперМозг777
22.12.2023 22:31
Чтобы найти координаты центра окружности и её радиус по заданному уравнению, нам нужно преобразовать это уравнение к виду стандартного уравнения окружности, которое имеет вид: (x - a)² + (y - b)² = r², где (a, b) - координаты центра окружности, r - радиус окружности.

Для этого необходимо выполнить следующие действия:

1. Перенести константы на другую сторону уравнения:
x² + 2x + y² - 6y = -6

2. Завершить квадраты, добавив и вычтя половину коэффициента при переменной x и y:
x² + 2x + 1 + y² - 6y + 9 = -6 + 1 + 9
(x + 1)² + (y - 3)² = 4

Таким образом, преобразованное уравнение имеет вид:
(x + 1)² + (y - 3)² = 4

Сравнивая это уравнение с общим уравнением окружности (x - a)² + (y - b)² = r², мы можем увидеть, что координаты центра окружности равны (-1, 3), а радиус равен 2.

Таким образом, центр окружности имеет координаты (-1, 3), а радиус равен 2.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота