В соревновании участвовало:
5 финнов;
1 норвежец;
6 шведов.
Пошаговое объяснение:
Пусть у нас
х финнов
у норвежцев
z шведов
Тогда получаем систему:
х + у + z = 12. (1)
2х + 0,5у + 0,25z = 12. (2)
вычтем из 2 уравнения 1
x-0,5y-0,75z=0
вычтем из (1) полученное уравнение,
тем самым уберем х
1,5y+1,75z=12
6y+7z=48
z может быть от 1 до 6, причём такое, при котором 6у=48-7z,или у=(48-z)/6
то есть (48-7z) кратно 6.
z = 1; 2; 3 ; 4 ; 5 - не подходят условию.
z=6 - подходит, при этом:
z=6
y=(48-7z)/6
или
y=1
Отсюда
х=12-6-1
х=5
Значит в соревновании участвовало:
5 финнов
1 норвежец
6 шведов
Проверяем по улову:
5*2 + 1*0,5 + 6*0,25 =
= 10 + 0,5 + 1,5 = 12
Все решено верно.
ДАНО
Y= x³ - 4x² + 3
1.Область определения - Х∈(-∞;+∞)
2. Пересечение с осью Х. Y=0 при х1 = 0, х2 =1, х3=3
3.3. Пересечение с осью У. У(0) = 0.
4. Поведение на бесконечности.limY(-∞) = - ∞ limY(+∞) = +∞
5. Исследование на чётность.Y(-x) = -x³ +4х²+3 ≠ Y(x).
Функция ни чётная ни нечётная.
6. Производная функции.Y'(x)= 3x²-4х
7. Корни при Х1=0,45 и х2=2,22
.Возрастает - Х∈(-∞;0,45)∪(2,22;+∞) - вне корней
Максимум - Y(0.45) = 0.631
Убывает - Х∈(0,45;2,22) - между корней.
Минимум - Y(2.22) = - 2.113
8. Вторая производнаяY"(x) = 6x-4
9. Точка перегибаY"(x)=0 при X=1 1/3 =1.333.
Выпуклая - "горка" - Х∈(-∞;1,333)
Вогнутая - "ложка"- Х∈(1,333;+∞)
10. График в приложении.
В соревновании участвовало:
5 финнов;
1 норвежец;
6 шведов.
Пошаговое объяснение:
Пусть у нас
х финнов
у норвежцев
z шведов
Тогда получаем систему:
х + у + z = 12. (1)
2х + 0,5у + 0,25z = 12. (2)
вычтем из 2 уравнения 1
x-0,5y-0,75z=0
вычтем из (1) полученное уравнение,
тем самым уберем х
1,5y+1,75z=12
6y+7z=48
z может быть от 1 до 6, причём такое, при котором 6у=48-7z,или у=(48-z)/6
то есть (48-7z) кратно 6.
z = 1; 2; 3 ; 4 ; 5 - не подходят условию.
z=6 - подходит, при этом:
z=6
y=(48-7z)/6
или
z=6
y=1
Отсюда
х=12-6-1
х=5
Значит в соревновании участвовало:
5 финнов
1 норвежец
6 шведов
Проверяем по улову:
5*2 + 1*0,5 + 6*0,25 =
= 10 + 0,5 + 1,5 = 12
Все решено верно.
ДАНО
Y= x³ - 4x² + 3
1.Область определения - Х∈(-∞;+∞)
2. Пересечение с осью Х. Y=0 при х1 = 0, х2 =1, х3=3
3.3. Пересечение с осью У. У(0) = 0.
4. Поведение на бесконечности.limY(-∞) = - ∞ limY(+∞) = +∞
5. Исследование на чётность.Y(-x) = -x³ +4х²+3 ≠ Y(x).
Функция ни чётная ни нечётная.
6. Производная функции.Y'(x)= 3x²-4х
7. Корни при Х1=0,45 и х2=2,22
.Возрастает - Х∈(-∞;0,45)∪(2,22;+∞) - вне корней
Максимум - Y(0.45) = 0.631
Убывает - Х∈(0,45;2,22) - между корней.
Минимум - Y(2.22) = - 2.113
8. Вторая производнаяY"(x) = 6x-4
9. Точка перегибаY"(x)=0 при X=1 1/3 =1.333.
Выпуклая - "горка" - Х∈(-∞;1,333)
Вогнутая - "ложка"- Х∈(1,333;+∞)
10. График в приложении.