Постараемся найти (как требует условие) методом подбора хотя бы одно целое решение системы.
Так как произведение целых чисел х и у равно положительному числу 16, то
а) числа х и у одного знака;
б) х и у являются делителями числа 16.
Но x + y = 10, исходя из этого в силу свойства а) заключаем, что числа х и у положительные.
Далее, положительными делителями числа 16 будут целые числа:
1, 2, 4, 8, 16.
Из этих чисел можно составить только пары (2; 8) и (8; 2), которые удовлетворяют условию x + y = 10.
ответ: (2; 8), (8; 2).
Так как произведение целых чисел х и у равно положительному числу 24, то
а) числа х и у одного знака;
б) х и у являются делителями числа 24.
Но x - y = 5, исходя из этого в силу свойства а) заключаем, что x > y.
Далее, положительными делителями числа 24 будут целые числа:
1, 2, 3, 4, 6, 8, 12, 24.
Из этих чисел можно составить только пару (8; 3) (x>y выполняется), которая удовлетворяет условию x - y = 5. Но, если x и y отрицательные, то пара (-3; -8) также (x>y выполняется) удовлетворяет условию x - y = 5.
xy=16 ⇔ 2*8 = 16
2) x-y=5 ⇔ 8-3 = 5
xy =24 ⇔8*3 = 24
1) x + y = 10
xy = 16
Используем подстановку
y = 10 - x
x(10 - x) = 16
-x^2 + 10x = 16
Переносим всё направо
0 = x^2 - 10x + 16
(x - 2)(x - 8) = 0
x1 = 2; y1 = 10 - x = 10 - 2 = 8
x2 = 8; y2 = 10 - x = 10 - 8 = 2
ответ: (2; 8); (8; 2)
2) x - y = 5
xy = 24
Тоже используем подстановку
y = x - 5
x(x - 5) = 24
x^2 - 5x = 24
x^2 - 5x - 24 = 0
(x - 8)(x + 3) = 0
x1 = -3; y1 = x - 5 = -3 - 5 = -8
x2 = 8; y2 = x - 5 = 8 - 5 = 3
ответ: (-3; -8); (8; 3)
Постараемся найти (как требует условие) методом подбора хотя бы одно целое решение системы.
Так как произведение целых чисел х и у равно положительному числу 16, то
а) числа х и у одного знака;
б) х и у являются делителями числа 16.
Но x + y = 10, исходя из этого в силу свойства а) заключаем, что числа х и у положительные.
Далее, положительными делителями числа 16 будут целые числа:
1, 2, 4, 8, 16.
Из этих чисел можно составить только пары (2; 8) и (8; 2), которые удовлетворяют условию x + y = 10.
ответ: (2; 8), (8; 2).
Так как произведение целых чисел х и у равно положительному числу 24, то
а) числа х и у одного знака;
б) х и у являются делителями числа 24.
Но x - y = 5, исходя из этого в силу свойства а) заключаем, что x > y.
Далее, положительными делителями числа 24 будут целые числа:
1, 2, 3, 4, 6, 8, 12, 24.
Из этих чисел можно составить только пару (8; 3) (x>y выполняется), которая удовлетворяет условию x - y = 5. Но, если x и y отрицательные, то пара (-3; -8) также (x>y выполняется) удовлетворяет условию x - y = 5.
ответ: (8; 3), (-3; -8).