Найдем производную, приравняем ее к нулю. найдем критические точки, разобьем область определения функции на промежутки и установим знак на каждом из них. где производная больше нуля - там функция возрастает, где она меньше нуля. функция убывает. при переходе через критическую точку : если производная меняет знак с плюса на минус, то это точка максимума, с минуса на плюс - точка миниимума, а значения функции в этих точках - соответственно максимум и минимум.
f'(x)=(x³/3+x²-3x-1)'=x²+2x-3
x²+2x-3=0 По Виету х=-3, х=1, неравенство решим методом интервалов (х+3)(х-1)<0
-31
+ - +
На промежутках (-∞;-3] и [1;+∞) функция возрастает, а на
[-3;1] убывает. Точка х= -3 - точка максимума, а х=1- точка минимума, максимум равен -27/3+9+9-1=8; минимум равен
Делятся на 3 группы- магматические, осадочные и метаморфические. Магматические породы делятся на 2 типа-вулканические и интрузивные.вулканические горные породы образуются при изливании магмы на поверхность Земли. Интрузивные горные породы, напротив, возникают при изливании магмы в толще земной коры.Метаморфические горные породы образуются в толще земной коры в результате изменения (метаморфизма) осадочных или магматических горных пород. Факторами, вызывающими эти изменения, могут быть: близость застывающего магматического тела и связанное с этим прогревание метаморфизуемой породы; воздействие отходящих от этого тела активных химических соединений, в первую очередь различных водных растворов.
Найдем производную, приравняем ее к нулю. найдем критические точки, разобьем область определения функции на промежутки и установим знак на каждом из них. где производная больше нуля - там функция возрастает, где она меньше нуля. функция убывает. при переходе через критическую точку : если производная меняет знак с плюса на минус, то это точка максимума, с минуса на плюс - точка миниимума, а значения функции в этих точках - соответственно максимум и минимум.
f'(x)=(x³/3+x²-3x-1)'=x²+2x-3
x²+2x-3=0 По Виету х=-3, х=1, неравенство решим методом интервалов (х+3)(х-1)<0
-31
+ - +
На промежутках (-∞;-3] и [1;+∞) функция возрастает, а на
[-3;1] убывает. Точка х= -3 - точка максимума, а х=1- точка минимума, максимум равен -27/3+9+9-1=8; минимум равен
1/3+1²-3-1-2 2/3