В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Arina1518
Arina1518
18.05.2020 06:44 •  Математика

Найдите наибольшее целое положительное значение x, удовлетворяющее неравенству log9(x−3)⋅logx−3(x+4)≥log29(x+4).

Показать ответ
Ответ:
Листик43364
Листик43364
05.09.2021 18:46

ответ:     х = 5 .      

Пошаговое объяснение:

log₉(x−3)⋅log₍ₓ₋₃₎(x+4)≥log₉²(x+4) ;         ОДЗ : хЄ( 3 ; 4 ) U ( 4 ;+ ∞ )

log₉(x−3)⋅( log₉(x+4)/log₉(x- 3) ≥ log₉²(x+4) ;

log₉²(x+4) ≤  log₉(x+4) ;    заміна   z =  log₉(x+4) ;

z² - z ≤ 0 ;   z₁ = 0 ,  z₂ = 1 ;    z Є [ 0 ; 1 ] ; тоді

0 ≤  log₉(x+4) ≤ 1 ;

1 ≤ х + 4 ≤ 9 ;

- 3 ≤ х ≤ 5 ; співставивши з ОДЗ ,  маємо : х Є( 3 ; 4 ) U ( 4 ; 5] .

Най більший цілий додатний корінь х = 5 .    

 

0,0(0 оценок)
Ответ:
missisivun2017
missisivun2017
05.09.2021 18:46

Пошаговое объяснение:

Решение дано на фото.


Найдите наибольшее целое положительное значение x, удовлетворяющее неравенству log9(x−3)⋅logx−3(x+4)
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота