В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
yxhcycgc
yxhcycgc
03.08.2020 14:32 •  Математика

Найдите наибольшее и наименьшее значения функции 1/(x^2-x+1)

Показать ответ
Ответ:
Вадим8383
Вадим8383
01.10.2020 06:59

найдем   производную    и = 0

f'(x)=(x^2-x+1)'/(x^2-x+1)^2  =- 2x-1/(x^2-x+1)     

-2x+1=0

 -2x=-1

  x=1/2

ставим

f(1/2)=  1/(1/4-1/2+1)   =4/3 макс

f(21/2)=1/((21/2)^2-(21/2)+1)=4/403  мин

 

0,0(0 оценок)
Ответ:
Okladakey
Okladakey
01.10.2020 06:59

найдёь производную функции  y'=((x^2-x+1)^-1)'=-1*(x^2-x+1)^(-2)  *(2x-2)=(2x-2)/(x^2-x+1)^2 

y'=0    2x-1=0   x=1/2       x^2-1x+1неравно 0      D=1-4=-3  корне нет

чертим луч с выколотой точкой x=1 /2    0,5

знак производной на интервалах             -                     +

x=0,5 точка мин    f0,5)=1/(о,25-0,5+1=1/0,75=100/75=4/3=...   наименьшее, наиболшего значения функция не имеет

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота