В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Imychka
Imychka
10.10.2022 23:49 •  Математика

Найдите наибольшее и наименьшее значения функции f(x)=2x^3+3x^2-36x на отрезке [-2; 1]

Показать ответ
Ответ:
Bekzhan20031
Bekzhan20031
05.10.2020 05:32
По этой теме план наших действий:
1) ищем производную
2) приравниваем её к нулю, решаем уравнение ( ищем критические точки)
3) смотрим: какие попали в указанный промежуток
4) ищем значения функции в этих точках и на концах промежутка
5) выбираем среди ответом нужные и пишем ответ
поехали?
1) f'(x) = 6x² + 6x - 36
2) 6x² + 6x - 36 = 0
     x² + x - 6 = 0
по т. Виета  х₁ = -3  и  х₂ = 2
3) из этих корней в промежуток [ -2; 1]   ни один корень
4) f(-2) = 2*(-2)³ + 3*(-2)² - 36*(-2) = 2*(-8) + 3*4 + 72 = -16 +12 +72 =
= 68
    f(1) = 2*1 +3*1 -36*1 = -31
5) max f(x) = f(-2) = 68
     min f(x) = f(1) = -31
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота