1. "Если укладывать в ряд по 10 плиток, то для квадратной площадки плиток не хватит."
Квадратная площадка из 10 плиток в ряду должна была бы быть
10 х 10 = 100 плиток
значит осталось меньше 100 плиток .
2. "При укладывании 8 плиток ряд остается один неполный ряд,а при укладывании по 9 плиток тоже остается неполный ряд, в котором на 6 плиток меньше, чем в неполном ряду при укладывании на 8".
Неполный ряд , при укладывании по 8 плиток , может составлять от 1 до 7 плиток , но ,
по условию в неполном ряду , при укладывании по 9 плиток в ряд , остается неполный ряд в котором на 6 плиток меньше , чем в неполном ряду из 8 плиток в ряд.
Такое возможно если в неполном ряду (при укладке 8 плиток в ряд) будет 7 плиток , тогда в неполном 9-плиточном ряду будет 1 плитка ( 7-6=1)
55 шт.
Пошаговое объяснение:
1. "Если укладывать в ряд по 10 плиток, то для квадратной площадки плиток не хватит."
Квадратная площадка из 10 плиток в ряду должна была бы быть
10 х 10 = 100 плиток
значит осталось меньше 100 плиток .
2. "При укладывании 8 плиток ряд остается один неполный ряд,а при укладывании по 9 плиток тоже остается неполный ряд, в котором на 6 плиток меньше, чем в неполном ряду при укладывании на 8".
Неполный ряд , при укладывании по 8 плиток , может составлять от 1 до 7 плиток , но ,
по условию в неполном ряду , при укладывании по 9 плиток в ряд , остается неполный ряд в котором на 6 плиток меньше , чем в неполном ряду из 8 плиток в ряд.
Такое возможно если в неполном ряду (при укладке 8 плиток в ряд) будет 7 плиток , тогда в неполном 9-плиточном ряду будет 1 плитка ( 7-6=1)
Значит можем составить уравнение :
пусть было х рядок плитки , тогда
8х+7= 9х+1
9х-8х=7-1
х= 6 рядов было плитки , а всего плиток было
8*6+7=48+7=55 шт
Пошаговое объяснение:
1) y = g(x):
Область определения: [-2; 6]
Область значения: [-3; 2]
Нули при x ∈ {2, 6}
На [-2; 0) ∪ (4; 6] монотонно убывает.
На (0; 4) монотонно возрастает.
На [-2; 2) отрицательна.
На (2; 6) положительна.
В (0; -3) absmin.
В (4; 2) absmax.
2) y = f(x):
Область определения: [-5; 4]
Область значения: [-2; 4]
Нули при x ∈ {-3.5, 1, 3}
На (-1; 2) монотонно убывает.
На [-5; -1) ∪ (2; 4] монотонно возрастает.
На [-5; -3.5) ∪ (1; 3) отрицательна.
На (-3.5; 1) ∪ (3; 4] положительна.
В (2; -1.5) locmin.
В (-1; 4) absmax.