записанное число делится на 81, следовательно оно делится и на 9. из признака делимости на 9 следует, что число единиц в этом числе так же делится на 9. среди чисел от 1 до 15 есть только одно такое число: 9, следовательно, в записи числа 9 единиц. данное число не делится на 10 и в его записи участвуют только нули и единицы, следовательно оно оканчивается на единицу. предположим, что можно вычеркнуть ноль так, чтобы оставшееся число делилось на 81. до вычеркивания нуля исходное число имело вид 10a+b, а полученное после вычеркивания a+b. преобразуем полученное число a+b=(10a+b)-9a 10a+b делится на 81 по условию. для того, чтобы a+b делилось на 81 нам необходимо, чтобы второе слагаемое делилось на 81, а для этого нужно, чтобы a делилось на 9 но этого не может быть так как число a записывается нулями и единицами, причем единиц не больше восьми, т.к. в исходном числе их было 9, причем одна из них находилась в самом правом разряде, т.е. неминуемо попала в число b. вывод: для числа a не выполнен признак делимости на 9, следовательно, 9a не делится на 81. противоречие.
сначала посчитаем количество кубиков с одной окрашенной гранью. таких кубиков будет 10 · 4 + 4 · 2 = 48. теперь посчитаем количество кубиков с двумя окрашенными гранями. чтобы кубики не повторялись, посчитаем количество таких кубиков на одной грани параллелепипеда с большей площадь и умножим это количество на 2. после этого посчитаем количество кубиков с двумя окрашенными гранями на грани параллелепипеда с меньшей площадью, исключая те кубики, которые прилегают к грани параллелепипеда с большей площадью и умножим это количество на 2. таким образом, кубиков с двумя окрашенными гранями будет 14 · 2 + 4 · 2 = 36. значит, всего получилось 48 + 36 = 84 кубика.
записанное число делится на 81, следовательно оно делится и на 9. из признака делимости на 9 следует, что число единиц в этом числе так же делится на 9. среди чисел от 1 до 15 есть только одно такое число: 9, следовательно, в записи числа 9 единиц. данное число не делится на 10 и в его записи участвуют только нули и единицы, следовательно оно оканчивается на единицу. предположим, что можно вычеркнуть ноль так, чтобы оставшееся число делилось на 81. до вычеркивания нуля исходное число имело вид 10a+b, а полученное после вычеркивания a+b. преобразуем полученное число a+b=(10a+b)-9a 10a+b делится на 81 по условию. для того, чтобы a+b делилось на 81 нам необходимо, чтобы второе слагаемое делилось на 81, а для этого нужно, чтобы a делилось на 9 но этого не может быть так как число a записывается нулями и единицами, причем единиц не больше восьми, т.к. в исходном числе их было 9, причем одна из них находилась в самом правом разряде, т.е. неминуемо попала в число b. вывод: для числа a не выполнен признак делимости на 9, следовательно, 9a не делится на 81. противоречие.
пояснение.
сначала посчитаем количество кубиков с одной окрашенной гранью. таких кубиков будет 10 · 4 + 4 · 2 = 48. теперь посчитаем количество кубиков с двумя окрашенными гранями. чтобы кубики не повторялись, посчитаем количество таких кубиков на одной грани параллелепипеда с большей площадь и умножим это количество на 2. после этого посчитаем количество кубиков с двумя окрашенными гранями на грани параллелепипеда с меньшей площадью, исключая те кубики, которые прилегают к грани параллелепипеда с большей площадью и умножим это количество на 2. таким образом, кубиков с двумя окрашенными гранями будет 14 · 2 + 4 · 2 = 36. значит, всего получилось 48 + 36 = 84 кубика.
ответ: 84.