В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
lisss2005
lisss2005
26.08.2021 03:03 •  Математика

Найдите наибольшее значение функции y=(x+5)^2(x+4)-4 на отрезке [-15; -4,5]

Показать ответ
Ответ:
kkira1
kkira1
31.08.2020 07:18
F(x)=(x+5)^2(x+4)-4= (x^2+10x+25)(x+4)-4=x^3+10x^2+25x+4x^2+40x+100-4=x^3+14x^2+65x+96
Находим производную
f '(x)=3x^2+28x+65
Находим min max функции приравняв производную к 0.
3x^2+28x+65=0
D<0 Нет действительных корней.
Значит функция возрастает на всем промежутке.
Наибольшее значение функции на отрезке [-15;-4,5] в точке X0=-4,5
f(-4,5)=(-4,5+5)^2(-4,5+4)-4=0,25*(-0,5)-4=-3,85
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота