Нули функции - это такое значение х, при котором функция y=f(x) равна нулю (то есть график функции пересекается с осью Х) . Для того, чтобы найти нули функции, надо функцию приравнять к нулю. Например, дана функция f(x) = х2 – 4 (икс в квадрате минус четыре) Приравниваем к нулю: х2 – 4 = 0 А теперь решаем как квадратное уравнение, находим х (первое) = - 2, х (второе) = 2 При этих значениях х функция y=f(x) = 0
Это можно сделать и графически. Просто построить функцию по точкам и начертить, точки пересечения графика с осью Х и будут нулями функции.
Данная функция определена и непрерывна на всей числовой оси. Находим её производную: y'=2*(x+3)*(x-2)+(x+3)²=3*x²+8*x-3. Приравнивая её к нулю, получаем квадратное уравнение 3*x²+8*x-3=0, которое имеет решения x1=1/3 и x2=-3. Значит, функция имеет две критические точки: x1=1/3 и x2=-3. Если x<3, то y'>0, поэтому на интервале (-∞;-3) функция возрастает. Если -3<x<1/3, то y'<0, так что на интервале (-3;1/3) функция убывает. Наконец, если x>1/3, то y'>0, поэтому на интервале (1/3;∞) функция возрастает. Значит, точка x=-3 является точкой максимума, а точка x=1/3 - точкой минимума.
Для того, чтобы найти нули функции, надо функцию приравнять к нулю.
Например, дана функция f(x) = х2 – 4 (икс в квадрате минус четыре)
Приравниваем к нулю:
х2 – 4 = 0
А теперь решаем как квадратное уравнение, находим х (первое) = - 2, х (второе) = 2
При этих значениях х функция y=f(x) = 0
Это можно сделать и графически. Просто построить функцию по точкам и начертить, точки пересечения графика с осью Х и будут нулями функции.
Посмотрите еще здесь:
ответ: x=-3.
Пошаговое объяснение:
Данная функция определена и непрерывна на всей числовой оси. Находим её производную: y'=2*(x+3)*(x-2)+(x+3)²=3*x²+8*x-3. Приравнивая её к нулю, получаем квадратное уравнение 3*x²+8*x-3=0, которое имеет решения x1=1/3 и x2=-3. Значит, функция имеет две критические точки: x1=1/3 и x2=-3. Если x<3, то y'>0, поэтому на интервале (-∞;-3) функция возрастает. Если -3<x<1/3, то y'<0, так что на интервале (-3;1/3) функция убывает. Наконец, если x>1/3, то y'>0, поэтому на интервале (1/3;∞) функция возрастает. Значит, точка x=-3 является точкой максимума, а точка x=1/3 - точкой минимума.