В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

Найдите наименьшее и наибольшее значение функции y=1/3x^3-3/2x^2+y на отрезке [-1; 1]

Показать ответ
Ответ:
kdfrolova
kdfrolova
06.10.2020 05:34
1)находим производную: f`(y)=x^2-3x
приравниваем к нулю и решаем: x(x-3)=0
x=0 или x=3
подставляем значения -1,0,1,3 в условие
f(-1)=-1/3-3/2+1=-1/3-1/2=-5/6
f(0)=1
f(1)=1/3-3/2+1=1/3-1/2=-1/6
f(3)=1/3*27-3/2*9+1= 9-13.5+1=-3.5
наименьшее значение: -3.5
наибольшее: 1

2)снова находим производную: f`(y)=2x
приравниваем к 0: 2х=0
х=0
убывает (от -бесконечности до 0)
возрастает (от 0 до бесконечности)

Критические точки функции, в которых она меняет возрастание на убывание или убывание на возрастание, называются точками экстремума.
значит точка экстремума=0
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота