В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
D1manch1k
D1manch1k
26.06.2022 04:40 •  Математика

Найдите наименьшее натуральное a такое, что выражение a(a+8)(a+16)(a+24)(a+32) делится на 10^7

Показать ответ
Ответ:
Semensem
Semensem
03.10.2020 22:23
Данное выражение должно делиться на 10^7 = 2^7 * 5^7, то есть кратным 2^7 и 5^7
a должно быть чётным
Пусть а=2n
a(a+8)(a+16)(a+24)(a+32)=2n(2n+8)(2n+16)(2n+24)(2n+32)=
=2^5(n+4)(n+8)(n+12)(n+16)  >  не кратно 2^7, a=2n не подходит.
Пусть а=4n
4n(4n+8)(4n+16)(4n+24)(4n+32) = 2^10 *(n+2)(n+4)(n+6)(n+8) - кратно 2^7

произведение (n+2)(n+4)(n+6)(n+8)  должно быть кратно  5^7,   все сомножители дают разные остатки от деления на 5, поэтому  среди них только один должен делиться на 5^7.
наименьшее n - в  множителе (n+8) ---> n=5^7 -8=78125-8=78117

a=4*78117=312468
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота