В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
FlaxyPlay
FlaxyPlay
05.09.2022 23:21 •  Математика

Найдите наименьшее натуральное число n такое, что число n + 15 делится на 22, а число n + 22 делится на 15

Показать ответ
Ответ:
verunyabogachk
verunyabogachk
16.08.2020 20:17
Обозначим число N.
Нам известно:
N+15 = 22*k; N = 22*k-15 = 22(k-1)+22-15 = 22(k-1)+7
N+22 = 15*m; N = 15*m-22 = 15(m-2)+30-22 = 15(m-2)+8.
Число N делится на 22 с остатком 7 и на 15 с остатком 8.
Так как N делится на чётное число 22 с нечетным остатком 7, то оно нечетное.
Рассмотрим число N-8=15(m-2)
N-8, также как и N, нечетное.
Если оно делится на 15 и при этом нечетное, то оно кончается на 5.
Тогда N кончается на 5+8=13, то есть на 3.
А число N-7 кончается на 13-7=6.
Итак, N-7=22(k-1), кончается на 6. Тогда k-1 кончается на 6/2=3.
Наименьшее число, кончающееся на 3, это и есть 3.
k-1=3; N-7=22(k-1)=22*3=66.
N-8=66-1=65 - не делится на 15, поэтому не подходит.
Следующее число, кончающееся на 3, это 13.
k-1=13; N-7=22*13=286.
N-8=286-1=285=15*19 - делится на 15, поэтому подходит.
N = 285+8 = 293.
Проверка.
N+15 = 308 = 22*14
N+22 = 315 = 15*21
Все правильно.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота