В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Sonyavishnya
Sonyavishnya
28.08.2021 22:38 •  Математика

Найдите наименьшее значение функции f(x)=x3-3x2-9x+31 на отрезке (-1; 4)

Показать ответ
Ответ:
ilya1613
ilya1613
08.10.2020 04:24

Напомним, что любая функция принимает наименьшее или наибольшее значение тогда, когда ее производная равна нулю или не существует. 

Найдем производную y´(x) и приравняем ее к нулю. 

y´(x)=(x3-3x2-9x+31 )´= 3x2 - 6x - 9 - существует при любых x.

3x2 - 6x - 9=0

Сократим на 3: x2 - 2x - 3=0

D= b2-4ac, D = (-2)2 - 4*1*(-3) = 4 + 12 =16

x1,2= (-b±√D) / 2a,

x1,2= (-(-2) ±√16) / 2*1 = (2±4) / 2 = 3, -1. 

x1= -1, x2= 3 - в этих точках функция y(x) принимает наименьшее или наибольшее значение.

Когда производная меньше нуля, функция убывает.

Когда производная больше нуля, функция возрастает.

Посмотрим на знаки производной.

При x<-1 y´(x)>0, функция y(x) возрастает

При -1 <x< 3 y´(x)<0, функция y(x) убывает

При х>3 y´(x)>0, функция y(x) возрастает

 На отрезке [-1; 4] функция убывает до точки х=3 и возрастает после нее, значит наименьшее значение в точке 3.

Подставим х=3 в функцию, получаем: y(3) = 33- 3*32- 9*3+ 31= 27-27-27+31= 4,  это и будет ответ.

ответ: 4.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота