28
Пошаговое объяснение:
это задача на диаграммы эйлера венна
1 - прочитали все вместе
2 - прочитали Марина и Юра
прочитал только Петя и никто другой = 9-1=8
прочитал только Юра и никто другой = 14-1-2=11
прочитала только Марина и никто другой=9-1-2=6
8+11+6+2+1=28
Но можно решить и по-другому. сложим все прочитанные рассказы 9+9+14=32
1 рассказ, который прочитали они все вместе, в общей сумме посчитан три раза, значит нам надо отнять 2 лишних раза. 30
2 рассказа, которые прочитали Марина и Юра посчитаны каждый по 2 раза, значит каждый по 1 лишнему разу, значит нам надо отнять 2 лишних раза. 28
1395
пусть это четырехзначное число вида abcd
причем a<10, b<10, c<10, d<10
так как 45 оканчивается на 5, четырехзначное число, кратное 45, может оканчиваться только или на 0 или на 5
на 0 не может, т.к. по условию задачи произведение всех этих четырех чисел больше 120, но меньше 140, т.е не может равняться 0
значит, четырехзначное число оканчивается на 5
т.е. d=5
по условию задачи
120 < a*b*c*5 < 140
делим на 5, получим
24 < a*b*c < 28
т.е. ( и выписываем цифры abc по возрастанию, чтобы получить наименьшие числа, хотя можно цифры переставлять, но тогда получим большие числа)
или
1) a*b*c = 25 = 1*5*5
2) a*b*c = 26 = 1*2*13 (не подходит, т.к. с=13>9)
3) a*b*c = 27 = 1*3*9
Последний 3) случай дает наименьшее четырехзначное число, делящееся на 45
abcd = 1395
1395:45=31
28
Пошаговое объяснение:
это задача на диаграммы эйлера венна
1 - прочитали все вместе
2 - прочитали Марина и Юра
прочитал только Петя и никто другой = 9-1=8
прочитал только Юра и никто другой = 14-1-2=11
прочитала только Марина и никто другой=9-1-2=6
8+11+6+2+1=28
Но можно решить и по-другому. сложим все прочитанные рассказы 9+9+14=32
1 рассказ, который прочитали они все вместе, в общей сумме посчитан три раза, значит нам надо отнять 2 лишних раза. 30
2 рассказа, которые прочитали Марина и Юра посчитаны каждый по 2 раза, значит каждый по 1 лишнему разу, значит нам надо отнять 2 лишних раза. 28
1395
Пошаговое объяснение:
пусть это четырехзначное число вида abcd
причем a<10, b<10, c<10, d<10
так как 45 оканчивается на 5, четырехзначное число, кратное 45, может оканчиваться только или на 0 или на 5
на 0 не может, т.к. по условию задачи произведение всех этих четырех чисел больше 120, но меньше 140, т.е не может равняться 0
значит, четырехзначное число оканчивается на 5
т.е. d=5
по условию задачи
120 < a*b*c*5 < 140
делим на 5, получим
24 < a*b*c < 28
т.е. ( и выписываем цифры abc по возрастанию, чтобы получить наименьшие числа, хотя можно цифры переставлять, но тогда получим большие числа)
или
1) a*b*c = 25 = 1*5*5
или
2) a*b*c = 26 = 1*2*13 (не подходит, т.к. с=13>9)
или
3) a*b*c = 27 = 1*3*9
Последний 3) случай дает наименьшее четырехзначное число, делящееся на 45
abcd = 1395
1395:45=31