В идеальном случае на первом взвешивании у нас две равновесных монеты, значит, оставшаяся - фальшивая. Оставшийся вариант - одна и настоящих + фальшивая. В этом случае первое взвешивание покажет, что на весах есть фальшивая монета и перевес в пользу одной из монет. Далее оставляем одну из монет на весах, а вторую меняем на оставшуюся из 3-х. В идеальном варианте весы в равновесии, значит, снятая монета - фальшивая. Это уже два взвешивания, но рассмотрим опять оставшийся случай. Весы опять показывают, что монеты весят по-разному и перевес в одну из сторон. Если мы не перекладывали монеты после второго взвешивания, то чаша оказавшаяся в том же положении, что и при первом взвешивании, содержит фальшивую монету. Т.е. в общем случае надо 2 взвешивания, но если повезет - то хватит и 1.
Пошаговое объяснение:
1. По условию задачи в урне находятся 12 белых и 8 черных шаров.
Вычислим общее количество шаров.
12 + 8 = 20.
2. Вероятность события равна частному от деления числа благоприятных исходов на общее количество исходов.
Вытащили шар.
Тогда вероятность того, что он черный P1 = 8/20 = 2/5.
Вероятность того, что он белый P2 = 12/20 = 3/5.
3. Вытащили 2 шара.
Если первый шар белый, то вероятность того, что второй черный P3 = 8 / (20 - 1) = 8/19.
Если первый шар черный, то вероятность того, что второй белый P4 = 12/ (20 - 1) = 12/19.
4. Найдем вероятность того, шары разного цвета.
P = 3/5 * 8/19 + 2/5 * 12/19 = 48/95.
ответ: вероятность того, что шар черный - 2/5, белый - 3/5, 2 шара разного цвета 48/95.