В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
kulish1103
kulish1103
03.11.2020 16:45 •  Математика

.Найдите объём прямоугольного параллелепипеда с измерениями 16 см, 14 см, 5см. ( )
поомгите​

Показать ответ
Ответ:
mrmakaka3
mrmakaka3
02.03.2020 01:06
Методы решения тригонометрических уравнений . Решение тригонометрического уравнения состоит из двух этапов : преобразование уравнения для получения его простейшего вида ( см. выше ) и решение полученного простейшего тригонометрического уравнения . Существует семь основных методов решения тригонометрических уравнений . 1. Алгебраический метод. Этот метод нам хорошо известен из алгебры ( метод замены переменной и подстановки ). 2. Разложение на множители. Этот метод рассмотрим на примерах . П р и м е р 1. Решить уравнение: sin x + cos x = 1 . Р е ш е н и е . Перенесём все члены уравнения влево : sin x + cos x – 1 = 0 , преобразуем и разложим на множители выражение в левой части уравнения : П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1. Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 , sin x · cos x – sin 2 x = 0 , sin x · ( cos x – sin x ) = 0 , П р и м е р 3. Решить уравнение: cos 2x – cos 8x + cos 6x = 1. Р е ш е н и е . cos 2x + cos 6x = 1 + cos 8x , 2 cos 4x cos 2x = 2 cos ² 4x , cos 4x · ( cos 2x – cos 4x ) = 0 , cos 4x · 2 sin 3x · sin x = 0 , 1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 , 3. Приведение к однородному уравнению . Уравнение называется однородным относительно sin и cos, если все его члены одной и той же степени относительно sin и cos одного и того же угла. Чтобы решить однородное уравнение , надо: а) перенести все его члены в левую часть ; б) вынести все общие множители за скобки ; в) приравнять все множители и скобки нулю ; г) скобки, приравненные нулю , дают однородное уравнение меньшей степени, которое следует разделить на cos ( или sin ) в старшей степени; д) решить полученное алгебраическое уравнение относительно tan . П р и м е р . Решить уравнение: 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2. Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x , sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 , tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 , корни этого уравнения : y1 = -1, y2 = -3, отсюда 1) tan x = –1, 2) tan x = –3, 4. Переход к половинному углу . Рассмотрим этот метод на примере : П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7. Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) = = 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) , 2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 , tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 , .5. Введение вс угла . Рассмотрим уравнение вида: a sin x + b cos x = c , где a, b, c – коэффициенты; x – неизвестное. Теперь коэффициенты уравнения обладают свойствами синуса и косинуса, а именно: модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos и sin ( здесь - так называемый вс угол ), и наше уравнение принимает вид: 6. Преобразование произведения в сумму . Здесь используются соответствующие формулы. П р и м е р . Решить уравнение: 2 sin x · sin 3x = cos 4x. Р е ш е н и е . Преобразуем левую часть в сумму : cos 4x – cos 8x = cos 4x , cos 8x = 0 , 8x = p / 2 + pk , x = p / 16 + pk / 8 . 7. Универсальная подстановка. Рассмотрим этот метод на примере . П р и м е р . Решить уравнение: 3 sin x – 4 cos x = 3 . Таким образом, решение даёт только первый случай.
0,0(0 оценок)
Ответ:
ignatevakseniap087h6
ignatevakseniap087h6
12.09.2022 17:59
Процесс решения композиционных задач с пропорций называется пропорционированием. В теорию ландшафтного искусства пропорции , так же как и остальные средства композиции, пришли из архитектуры.
В архитектурной практике гармоническое соотношение пространственных величин можно разделить на 2 группы :простые, строящиеся на отношениях простых чисел, и иррациональные, получаемые при геометрического построения.
В первой группе зависимость 2 величин выражается дробным числом, где числитель и знаменатель - целые числа в пределах от 1 до 6 (условно). Наиболее простая соизмеримость выражается в отношении 1:1 (квадрат). По мере увелечения чисел, составляющих отношение, последнее усложняется ( квадрат 1.5 квадрата, отношения сторон в египетском треугольнике, имеющем катеты размером 3 и 4 и гипотенузу 5).
Во второй группе соотношения пространственных величин основываются на простой геометрической закономерности их построения 1)отношение диагонали квадрата к его стороне (а:в=1:2 и т.д.)2) соотношение высоты равностороннего треугольника к половине его основания(а:в=1:3)
Указанные иррациональные отношения служат функциями простейших геометрических форм квадрата и равностороннего треугольника и с достаточной точностью могут быть  заменнены целочисленными отношениями.
В настоящее время  в практике чаще всего используются 2 вида пропорционирования: модульная система пропорций и золотое сечение.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота