А) Если прямоугольник является квадратом, то его диагонали взаимно перпендикулярны и делят углы пополам. Это верное утверждение. Его называют теоремой Обратное Если диагонали прямоугольника взаимно перпендикулярны и делят углы пополам, то этот прямоугольник - квадрат Это верное утверждение. Это тоже теорема Противоположное Если прямоугольник не является квадратом, то его диагонали не взаимно перпендикулярны и не делят углы пополам. Теорема. Обратное противоположному Если диагонали прямоугольника не взаимно перпендикулярны и не делят углы пополам, то этот прямоугольник - не квадрат. Теорема.
2)Всякий параллелограмм с равными диагоналями есть прямоугольник или квадрат. Верное. Теорема Обратное Если параллелограмм является прямоугольником или квадратом, то его диагонали равны. Верное. Теорема. Противоположное Если в параллелограмме диагонали не равны, то этот параллелограмм не прямоугольник и не квадрат. Теорема. Противоположное обратному Если параллелограмм не является прямоугольником или квадратом, то его диагонали не равны. Теорема.
Задачу можно решить двумя 1) посредством формул, аксиом и теорем планиметрии, изучаемых в стандартной школьной программе; 2) и через привлечение теоремы Менелая. Решим её обоими
[[[ 1 ]]] с п о с о б
Обозначим длины сторон треугольника как:
; ; и ;
Тогда: ;
Обозначим где – некоторое число,
такое, что: ;
Найдя это число мы найдём и пропорцию, в которой делит сторону ;
Проведём прямую тогда по трём углам:
а значит: и ;
и ;
[1] и ;
Поскольку то:
;
;
По трём углам: а значит:
и ;
Поскольку и по [1] то:
;
;
По теореме Фалеса, об отсечении параллельными прямыми внутри угла пропорциональных отрезков, получается, что:
;
Тогда получаем уравнение:
;
;
;
;
;
;
Значит и откуда ясно, что отношение, в котором точка делит сторону считая от точки будет:
;
[[[ 2 ]]] с п о с о б
Применим теорему Менелая
в треугольнике с секущей :
;
;
;
;
;
;
Отсюда: ;
;
Значит откуда ясно, что отношение, в котором точка делит сторону считая от точки будет:
Обратное
Если диагонали прямоугольника взаимно перпендикулярны и делят углы пополам, то этот прямоугольник - квадрат Это верное утверждение. Это тоже теорема
Противоположное
Если прямоугольник не является квадратом, то его диагонали не взаимно перпендикулярны и не делят углы пополам. Теорема.
Обратное противоположному
Если диагонали прямоугольника не взаимно перпендикулярны и не делят углы пополам, то этот прямоугольник - не квадрат. Теорема.
2)Всякий параллелограмм с равными диагоналями есть прямоугольник или квадрат. Верное. Теорема
Обратное
Если параллелограмм является прямоугольником или квадратом, то его диагонали равны. Верное. Теорема.
Противоположное
Если в параллелограмме диагонали не равны, то этот параллелограмм не прямоугольник и не квадрат. Теорема.
Противоположное обратному
Если параллелограмм не является прямоугольником или квадратом, то его диагонали не равны. Теорема.
1) посредством формул, аксиом и теорем планиметрии, изучаемых в стандартной школьной программе;
2) и через привлечение теоремы Менелая.
Решим её обоими
[[[ 1 ]]] с п о с о б
Обозначим длины сторон треугольника как:
;
;
и ;
Тогда: ;
Обозначим где – некоторое число,
такое, что: ;
Найдя это число мы найдём и пропорцию, в которой делит сторону ;
Проведём прямую тогда по трём углам:
а значит: и ;
и ;
[1] и ;
Поскольку то:
;
;
По трём углам: а значит:
и ;
Поскольку и по [1] то:
;
;
По теореме Фалеса, об отсечении параллельными прямыми внутри угла пропорциональных отрезков, получается, что:
;
Тогда получаем уравнение:
;
;
;
;
;
;
Значит и откуда ясно, что отношение, в котором точка делит сторону считая от точки будет:
;
[[[ 2 ]]] с п о с о б
Применим теорему Менелая
в треугольнике с секущей :
;
;
;
;
;
;
Отсюда: ;
;
Значит откуда ясно, что отношение, в котором точка делит сторону считая от точки будет:
;
О т в е т :