В 3-мерных построениях малейшие ошибки искажают всю картину. В тексте одно (ответ 3,1623), на бумаге - другое. (ответ4,899). На бумаге, видимо, правильно. Как бы вы ни решали, наука одна и та же, и элементы вычисления те же. Но векторное исчисление может не использовать абсолютные координаты, и всё решается в относительных соотношениях, а если размеры объектов небольшие, мы не будем оперировать большими числами, которые могли бы возникнуть если центр координат сильно удален от объекта при расчете в абсолютных координатах. Векторные вычисления по сути есть вычисления матричные. Векторное произведение векторов дает вектор, перпендикулярных обоим заданным векторам. Это позволяет чисто формально выполнить умножение, не задумываясь об их относительном расположении. Я бы рекомендовала вначале хорошо усвоить все операции с матрицами 3х3 и 4х4, чтобы иметь надежный инструмент для вычислений, и запрограммировать это в программе Excel. Потом разобраться какими (несколькими) видами уравнений можно задавать векторы, прямые и плоскости, и как это задается в матричном виде. Как можно векторными и матричными операциями решать задачи о перпендикулярах и пересечениях прямых, прямой и плоскости, двух плоскостей. По сути плоскость задается обычными тремя точками или тремя точками на осях или двумя параллельными прямыми или векторами или пересекающимися прямыми. Все это можно сделать как на языке обычных систем уравнений, так и на языке матриц. Рекомендую найти в интернете старинные учебники Мусхелишвили, где всё систематически и подробно излагается. Сейчас, когда есть компьютеры, нет проблем за несколько секунд выполнить любую операцию, но интереснее всего поразмышлять над её смыслом, над тем, насколько это математически просто и красиво и в геометрическом и в матричном виде.
Существует множество легенд рассказывающих о происхождении Млечного Пути. Особого внимания заслуживают два схожих древнегреческих мифа, которые раскрывают этимологию слова Galaxias и его связь с молоком .Одна из легенд рассказывает о разлившемся по небу материнском молоке богини Геры, кормившей грудью Геракла. Когда Гера узнала, что младенец, которого она кормит грудью не её собственное дитя, а незаконный сын Зевса и земной женщины, она оттолкнула его и пролитое молоко стало Млечным Путём. Другая легенда говорит о том, что пролитое молоко — это молоко Реи, жены Кроноса, а младенцем был сам Зевс. Кронос пожирал своих детей, так как ему было предсказано, что он будет свергнут с вершины Пантеона собственным сыном. У Реи зародился план о том, как своего шестого сына, новорожденного Зевса. Она обернула в младенческие одежды камень и подсунула его Кроносу. Кронос попросил её покормить сына ещё раз, перед тем как он его проглотит. Молоко, пролитое из груди Реи на голый камень, впоследствии стали называть Млечным Путём.
В тексте одно (ответ 3,1623), на бумаге - другое. (ответ4,899).
На бумаге, видимо, правильно.
Как бы вы ни решали, наука одна и та же, и элементы вычисления те же.
Но векторное исчисление может не использовать абсолютные координаты, и всё решается в относительных соотношениях, а если размеры объектов небольшие, мы не будем оперировать большими числами, которые могли бы возникнуть если центр координат сильно удален от объекта при расчете в абсолютных координатах.
Векторные вычисления по сути есть вычисления матричные. Векторное произведение векторов дает вектор, перпендикулярных обоим заданным векторам. Это позволяет чисто формально выполнить умножение, не задумываясь об их относительном расположении.
Я бы рекомендовала вначале хорошо усвоить все операции с матрицами 3х3 и 4х4, чтобы иметь надежный инструмент для вычислений, и запрограммировать это в программе Excel.
Потом разобраться какими (несколькими) видами уравнений можно задавать векторы, прямые и плоскости, и как это задается в матричном виде. Как можно векторными и матричными операциями решать задачи о перпендикулярах и пересечениях прямых, прямой и плоскости, двух плоскостей.
По сути плоскость задается обычными тремя точками или тремя точками на осях или двумя параллельными прямыми или векторами или пересекающимися прямыми. Все это можно сделать как на языке обычных систем уравнений, так и на языке матриц.
Рекомендую найти в интернете старинные учебники Мусхелишвили, где всё систематически и подробно излагается.
Сейчас, когда есть компьютеры, нет проблем за несколько секунд выполнить любую операцию, но интереснее всего поразмышлять над её смыслом, над тем, насколько это математически просто и красиво и в геометрическом и в матричном виде.