Зачем? лучше, чем крылов, вряд ли кто-то придумает, если даже готовую мораль без ошибок не могут списать. однажды деткам где-то в школе по программе решили творчество крылова преподать и каждый отрок, поскрипев мозгами, был должен басню "под крылова" наклепать. ворону с сыром принесли, свинью под дубом- чтоб атмосферу творчества создать, да с моськой, говорят, была проблема - её никто так и не смог поймать.. к концу урока сочиненья сдали и, чтобы авторам хвалу и честь воздать найлучшие творенья зачитали, но лавры оказалось некому вручать ведь хоть с оригиналом стих был сходен- был посрамлен лирический творец берись за то, к чему ты сроден коль хочешь, чтоб в делах успешен был конец".
Распределительное свойство умножения относительно сложения:
Чтобы умножить число на сумму двух чисел, можно это число умножить на каждое слагаемое и полученные результаты сложить.
С букв распределительное свойство умножения относительно сложения записывают так:
\[a(b + c) = ab + ac\]
либо так:
\[(b + c) \cdot a = ab + ac\]
Распределительное свойство умножения относительно вычитания:
Чтобы умножить число на разность двух чисел, можно умножить это число на уменьшаемое и на вычитаемое, и из первого произведения вычесть второе.
С букв распределительное свойство умножения относительно вычитания записывают так:
\[a(b - c) = ab - ac\]
либо так:
\[(b - c) \cdot a = ab - ac\]
Распределительное свойство умножения верно и для большего количества чисел. Например, для трех слагаемых распределительное свойство умножения относительно сложения имеет вид:
Распределительное свойство умножения относительно сложения:
Чтобы умножить число на сумму двух чисел, можно это число умножить на каждое слагаемое и полученные результаты сложить.
С букв распределительное свойство умножения относительно сложения записывают так:
\[a(b + c) = ab + ac\]
либо так:
\[(b + c) \cdot a = ab + ac\]
Распределительное свойство умножения относительно вычитания:
Чтобы умножить число на разность двух чисел, можно умножить это число на уменьшаемое и на вычитаемое, и из первого произведения вычесть второе.
С букв распределительное свойство умножения относительно вычитания записывают так:
\[a(b - c) = ab - ac\]
либо так:
\[(b - c) \cdot a = ab - ac\]
Распределительное свойство умножения верно и для большего количества чисел. Например, для трех слагаемых распределительное свойство умножения относительно сложения имеет вид:
\[a(b + c + d) = ab + ac + ad\]
Распределительное свойство умножения упрощает устный счет.
Примеры:
\[1)28 \cdot 7 = (20 + 8) \cdot 7 = 20 \cdot 7 + 8 \cdot 7 = \]
\[ = 140 + 56 = 196;\]
надеюсьтам все и понятно