В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

Найдите площадь фигуры ограниченной параболой у=х^2 и прямой у=5-х​

Показать ответ
Ответ:
Nicalat
Nicalat
01.02.2023 18:29
1. Для первого значения аргумента функция является непрерывной, т.к. подставляя значения аргумента в уравнение получим: 9/2 - это число, слудовательно, условие существования функции соблюдено. Для второго - разрывна, так как знаменатель оюращается в ноль, на ноль делить нельзя в школьной программе.2. Из последнего предложение следует, что точка 2 - точка разрыва функции, тогда сможем найти лево- и правосторонние пределы:  lim x to 2- =  9/ 0- = - бесконечностьlim х to 2+ = 9/0+ = + бесконечность
0,0(0 оценок)
Ответ:
AQUA111
AQUA111
24.01.2023 23:00

{

Вероятностью (вероятностной мерой) называется мера (числовая функция) {\displaystyle \mathbf {P} }\mathbf {P} , заданная на множестве событий, обладающая следующими свойствами:

Неотрицательность: {\displaystyle \forall A\subset X\colon \mathbf {P} (A)\geqslant 0}\forall A\subset X\colon {\mathbf  P}(A)\geqslant 0,

Аддитивность: вероятность наступления хотя бы одного (то есть суммы) из попарно несовместных событий равна сумме вероятностей этих событий; другими словами, если {\displaystyle A_{i}A_{j}=\varnothing }A_{i}A_{j}=\varnothing  при {\displaystyle i\neq j}i\neq j, то {\displaystyle P\left(\sum _{i}A_{i}\right)=\sum _{i}\mathbf {P} (A_{i})}{\displaystyle P\left(\sum _{i}A_{i}\right)=\sum _{i}\mathbf {P} (A_{i})}.

Конечность (ограниченность единицей): {\displaystyle \mathbf {P} (X)=1}{\mathbf  P}(X)=1,

В случае если элементарных событий X конечно, то достаточно указанного условия аддитивности для произвольных двух несовместных событий, из которого будет следовать аддитивность для любого конечного количества несовместных событий. Однако, в случае бесконечного (счётного или несчётного элементарных событий этого условия оказывается недостаточно. Требуется так называемая счётная или сигма-аддитивность, то есть выполнение свойства аддитивности для любого не более чем счётного семейства попарно несовместных событий. Это необходимо для обеспечения «непрерывности» вероятностной меры.

Вероятностная мера может быть определена не для всех подмножеств множества {\displaystyle X}X. Предполагается, что она определена на некоторой сигма-алгебре {\displaystyle \Omega }\Omega  подмножеств[6]. Эти подмножества называются измеримыми по данной вероятностной мере и именно они являются случайными событиями. Совокупность {\displaystyle (X,\Omega ,P)}(X,\Omega ,P) — то есть множество элементарных событий, сигма-алгебра его подмножеств и вероятностная мера — называется вероятностным Свойства вероятности

Основные свойства вероятности проще всего определить, исходя из аксиоматического определения вероятности.

1) вероятность невозможного события (пустого множества {\displaystyle \varnothing }\varnothing ) равна нулю:

{\displaystyle \mathbf {P} \{\varnothing \}=0;}{\mathbf  {P}}\{\varnothing \}=0;

Это следует из того, что каждое событие можно представить как сумму этого события и невозможного события, что в силу аддитивности и конечности вероятностной меры означает, что вероятность невозможного события должна быть равна нулю.

2) если событие A включается («входит») в событие B, то есть {\displaystyle A\subset B}A\subset B, то есть наступление события A влечёт также наступление события B, то:

{\displaystyle \mathbf {P} \{A\}\leqslant \mathbf {P} \{B\};}{\mathbf  {P}}\{A\}\leqslant {\mathbf  {P}}\{B\};

Это следует из неотрицательности и аддитивности вероятностной меры, так как событие {\displaystyle B}B, возможно, «содержит» кроме события {\displaystyle A}A ещё какие-то другие события, несовместные с {\displaystyle A}A.

3) вероятность каждого события {\displaystyle A}A находится от 0 до 1, то есть удовлетворяет неравенствам:

{\displaystyle 0\leqslant \mathbf {P} \{A\}\leqslant 1;}0\leqslant {\mathbf  {P}}\{A\}\leqslant 1;

Первая часть неравенства (неотрицательность) утверждается аксиоматически, а вторая следует из предыдущего свойства с учётом того, что любое событие «входит» в {\displaystyle X}X, а для {\displaystyle X}X аксиоматически предполагается {\displaystyle \mathbf {P} \{X\}=1}{\mathbf  {P}}\{X\}=1.

4) вероятность наступления события {\displaystyle B\setminus A}B\setminus A, где {\displaystyle A\subset B}A\subset B, заключающегося в наступлении события {\displaystyle B}B при одновременном ненаступлении события {\displaystyle A}A, равна:

{\displaystyle \mathbf {P} \{B\setminus A\}=\mathbf {P} \{B\}-\mathbf {P} \{A\};}{\mathbf  {P}}\{B\setminus A\}={\mathbf  {P}}\{B\}-{\mathbf  {P}}\{A\};

Это следует из аддитивности вероятности для несовместных событий и из того, что события {\displaystyle A}A и {\displaystyle B\setminus A}B\setminus A являются несовместными по условию, а их сумма равна событию {\displaystyle B}B.

5) вероятность события {\displaystyle {\bar {A}}}{\bar  {A}}, противоположного событию {\displaystyle A}A, равна:

{\displaystyle \mathbf {P} \{{\bar {A}}\}=1-\mathbf {P} \{A\};}{\mathbf  {P}}\{{\bar  {A}}\}=1-{\mathbf  {P}}\{A\};

Это следует из предыдущего свойства, если в качестве множества {\displaystyle B}B использовать всё и учесть, что {\displaystyle \mathbf {P} \{X\}=1}{\mathbf  {P}}\{X\}=1.

6) (теорема сложения вероятностей) вероятность наступления хотя бы одного из (то есть суммы) произвольных (не обязательно несовместных) двух событий {\displaystyle A}A и {\displaystyle B}B равна:

{

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота