Давным-давно в старинном городе жил Мастер, окружённый учениками. Самый из них однажды задумался: «А есть ли вопрос, на который наш Мастер не смог бы дать ответа?» Он пошёл на цветущий луг, поймал самую красивую бабочку и спрятал её между ладонями. Бабочка цеплялась лапками за его руки, и ученику было щекотно. Улыбаясь, он подошёл к Мастеру и спросил: — Скажите, какая бабочка у меня в руках: живая или мёртвая? Он крепко держал бабочку в сомкнутых ладонях и был готов в любое мгновение сжать их ради своей истины.
Легко видеть, что в любом хорошем числе сумма цифр четна. Следовательно, если числа n и n+1 хорошие, число n должно заканчиваться на 9 (иначе суммы цифр в этих числах будут иметь разную четность). Нетрудно проверить, что n не может быть однозначным или двузначным – если n двузначно, то его цифры равны и последняя равна 9, но число 99 не подходит, так как сумма цифр числа 100 равна 1.
Покажем, что если n трехзначно, то сумма его первых двух цифр равна 9. Как показано выше, последняя цифра должна быть равна 9. Кроме того, цифры можно разбить на две группы с одинаковой суммой. Понятно, что сумма цифр в каждой группе не больше 9 (т.к. в одной из групп будет только одна цифра). Значит, либо в одной группе будет девятка, а в другой две первые цифры, либо в одной группе будет девятка и ноль, а в другой первая цифра (ноль не может стоять на первом месте, а первая цифра в этом случае также будет равна 9). Так или иначе, число имеет вид ab9, где a+b=9. Тогда число n+1 имеет вид a(b+1)0, поскольку это число хорошее, a=b+1. Значит, b+(b+1)=9 и b=4, а=5. Таким образом, единственное трехзначное n, которое нам подойдет, равно 549, оно и будет наименьшим возможным.
— Скажите, какая бабочка у меня в руках: живая или мёртвая?
Он крепко держал бабочку в сомкнутых ладонях и был готов в любое мгновение сжать их ради своей истины.
Покажем, что если n трехзначно, то сумма его первых двух цифр равна 9. Как показано выше, последняя цифра должна быть равна 9. Кроме того, цифры можно разбить на две группы с одинаковой суммой. Понятно, что сумма цифр в каждой группе не больше 9 (т.к. в одной из групп будет только одна цифра). Значит, либо в одной группе будет девятка, а в другой две первые цифры, либо в одной группе будет девятка и ноль, а в другой первая цифра (ноль не может стоять на первом месте, а первая цифра в этом случае также будет равна 9). Так или иначе, число имеет вид ab9, где a+b=9. Тогда число n+1 имеет вид a(b+1)0, поскольку это число хорошее, a=b+1. Значит, b+(b+1)=9 и b=4, а=5. Таким образом, единственное трехзначное n, которое нам подойдет, равно 549, оно и будет наименьшим возможным.
ответ: 549.