В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
валера200331
валера200331
12.08.2022 10:28 •  Математика

Найдите площадь сечения треугольной пирамиды, у которой все рёбра равны, плоскостью, проходящей через сторону основания, равную 18 см, и точку, делящую апофему пирамиды в отношении 2:1, считая от вершины.

Показать ответ
Ответ:
tatyanachueva
tatyanachueva
25.09.2022 06:09

1) Функция определена повсюду кроме точки, в которой знаменатель превращается в ноль, x = 0.

Область определения состоит из двух интервалов  D(y):(-∞;0)  U (0; +∞).

2) Так как функция не имеет значения при х = 0, то график функции не пересекает ось Оу.

Приравняем функцию к нулю:  

1/3x=0.

Так как эта функция не может быть равна 0, то график функции не пересекает ось Ох:

3) Проверяем функцию на четность.

Проверим функцию -  четна или нечетна с соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем:  

f(-x)=1/(3*(-x))=-1/3x≠f(x)=-f(x).

Итак, функция нечетная, непериодическая.

4) В данном случае имеем одну точку разрыва x=0.  

Вычислим границы слева и справа от этой точки

lim┬(x→-0)⁡〖 1/3x=-∞.〗

lim┬(x→+0)⁡〖 1/3x=+∞.〗

Итак,  x=0  – точка разрыва второго рода.

5) Для отыскания интервалов монотонности вычисляем первую производную функции

〖y^'=〗⁡〖1/3* -1/x^2 =-1/〖3x〗^2 =0.〗

Решаем это уравнение и его корни будут экстремумами, но так как переменная только в знаменателе, то производная не может быть равна нулю.

Поэтому функция не имеет экстремумов.  

Поскольку при любых значениях аргумента производная отрицательна, то функция на всей области убывающая.

6. Точки перегибов графика функции:  

Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции, + нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:  

y''((1/(3x)) = 2/(3x³) = 0

Данная функция не может быть равна нулю, поэтому перегибов у функции нет.

7) Интервалы выпуклости и вогнутости.

Интервалы, где функция выпуклая или вогнутая, находим по знаку второй производной : где вторая производная меньше нуля, там график функции выпуклый, а где больше - вогнутый.

x =    -1   0   1

y'' =   -2/3  - 2/3.  

Вогнутая на промежутках: (0; ∞)  

Выпуклая на промежутках: (-∞;0)  

8) Асимптоты.

Вертикальной асимптотой является ось Оу, определённая в пункте 4.  

Горизонтальные асимптоты графика функции:  

Горизонтальную асимптоту найдем с предела данной функции при x->+∞ и x->-∞. Соотвествующие пределы находим:  

lim┬(x→∞)⁡〖 1/3x=∞〗,  значит, горизонтальной асимптоты справа не существует.

Аналогично, при x->-∞  f(x) = -∞, значит, горизонтальной асимптоты слева не существует

Наклонные асимптоты графика функции.  

Уравнение наклонной асимптоты имеет вид  y=kx+b. Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при lim┬(  x→±∞)⁡〖(kx+b-f(x)).〗  

Находим коэффициент k:    k=lim┬(x→±∞)⁡〖(f(x))/x.〗  

k=lim┬(  x→±∞)⁡〖 1/(3x*x)=1/〖3x〗^2 =0.〗

Коэффициент b: b=〖lim┬(x→±∞) (〗⁡〖f(x)-kx).〗

Для данной функции первый из этих пределов равен нулю, поэтому наклонная линия не определяется (она совпадает с горизонтальной асимптотой).

8) На основе проведенного анализа выполняем построение графика функции. Для этого сначала строим вертикальные и наклонные асимптоты, затем находим значение функции в нескольких точках и по них проводим построение.

Таблица точек

 x y

-3.0 -0.11

-2.5 -0.13

-2.0 -0.17

-1.5 -0.22

-1.0 -0.33

-0.5 -0.67

0 -

0.5 0.67

1.0 0.33

1.5 0.22

2.0 0.17

2.5 0.13

3.0 0.11.


Решить и построить график функции y=1/(3x)
0,0(0 оценок)
Ответ:
natali31174
natali31174
22.03.2020 19:28
Это загадка из книги Бернарда Вебера "День муравья":
     «Аплодисменты нарастают.
     - А теперь, мадам Рамирез, вы готовы к новой загадке?
     - Готова.
     - Тогда я вскрываю этот запечатанный конверт и объявляю вашу сегодняшнюю загадку.
     Барабанная дробь.
     - Вот эта загадка: назовите следующую строку этой последовательности.
     Фломастером он пишет цифры на белой доске:
     1
     11
     21
     1211
     111221
     312211
     Крупный план кандидатки, на ее лице смятение:
     - Ну… Это непросто!
     - Не торопитесь, мадам Рамирез. У вас есть время до завтра. Вот вам в ключевая фраза. Она направит вас по верному пути. Итак, слушайте внимательно: «Чем больше у вас ума… тем меньше у вас шансов догадаться».

     Решение простое. Пишем единицу: 1. Читаем вслух то, что написали: "Одна единица". Записываем цифрами всё, что мы произнесли: 11.  Читаем вслух написанное: "Две единицы". Записываем это: 21. Читаем: "Одна двойка, одна единица". Записываем: 1211. И так далее.
     После 312211 следующая строка будет 13112221, а ещё следующая - 1113213211
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота