Решение. На продолжениях отрезков AM и А\М\ отложим отрезки MD и Mi А, равные AM и АХМХ (рис. 100). ААМС = ABMD по двум сторонам и углу между ними (AM = MD по построению; ВМ = МС, так как AM — медиана; ZAMC = ZBMD, так как эти углы — вертикальные). Отсюда следует, что BD = АС.
Аналогично, из равенства треугольников А\М\С\ и B\M\D\ следует, что B\D\ = А\С\, а так как АС = А\С\ (по условию), то BD = = BXDX.
AABD = AA\B\Di по трем сторонам (АВ = АХВХ; BD = BXDX\ AD = AXDX, так как AD = 2AM, A\D\ = 2A\M\ и AM = AXMX). Отсюда следует, что медианы ВМ и В\М\ в этих треугольниках равны . Поэтому ВС = 2ВМ = 2В\М\ = В\С\ и ААВС = АА\В\С\ по трем сторонам.
Пошаговое объяснение:
ДАНО: Y = x³/(x-1)
Исследование
1. Область определения: D(х)= R\{1} = (-∞;1)∪(1;+∞).
Не допускаем деления на 0 в знаменателе.
2.Поведение в точке разрыва. LimY(1-)= -∞, LimY(1+)= +∞. Вертикальная асимптота - х = 1. Неустранимый разрыв II-го рода.
3. Поведение на бесконечности - наклонная асимптота.
k = lim(+∞)Y(х)/x = х³/(x²+ x) = ∞ - коэффициент наклона.
Наклонной асимптоты нет.
4. Нули функции, пересечение с осью ОХ. Y(x) = 0.
5. Пересечение с осью ОУ. Y(0) = 0
6. Интервалы знакопостоянства.
Отрицательна: Y(x)<0 - X∈(0;1).
Положительна: Y>0 - X∈(-∞;0)∪(1;+∞)
7. Проверка на чётность.
Функция со сдвигом от осей симметрии - функция общего вида.
Ни нечётная: Y(-x) ≠ -Y(x) ни чётная: Y(-x) ≠ Y(x)
8. Поиск экстремумов по первой производной.
Корни квадратного уравнения. х1 = 0 и х2= 3/2 = 1,5.
9. Локальные экстремумы.
Минимум: Y(1,5) = 6.75 , Максимум: Y(0) = 0
10. Интервалы монотонности.
Возрастает: X∈(1.5;+∞)
Убывает: Х∈(-∞;1)∪(1;1.5)
11. Поиск перегибов по второй производной.
y''(x) = 2*x*(x²-3*x+3)/(x-1)² = 0
x = 0 и точка разрыва при Х = 1.
12. Выпуклая - 'горка' - X∈(0;1).
Вогнутая - 'ложка'- X∈(-∞;0)∪(1;+∞;).
13. Область значений. E(y) - y∈(-∞;+∞).
Рисунок с графиком функции в приложении.
Решение. На продолжениях отрезков AM и А\М\ отложим отрезки MD и Mi А, равные AM и АХМХ (рис. 100). ААМС = ABMD по двум сторонам и углу между ними (AM = MD по построению; ВМ = МС, так как AM — медиана; ZAMC = ZBMD, так как эти углы — вертикальные). Отсюда следует, что BD = АС.
Аналогично, из равенства треугольников А\М\С\ и B\M\D\ следует, что B\D\ = А\С\, а так как АС = А\С\ (по условию), то BD = = BXDX.
AABD = AA\B\Di по трем сторонам (АВ = АХВХ; BD = BXDX\ AD = AXDX, так как AD = 2AM, A\D\ = 2A\M\ и AM = AXMX). Отсюда следует, что медианы ВМ и В\М\ в этих треугольниках равны . Поэтому ВС = 2ВМ = 2В\М\ = В\С\ и ААВС = АА\В\С\ по трем сторонам.
Пошаговое объяснение: