1) S бок.гр. = ah/2 - площадь боковой грани правильной пирамиды пирамиды. Таких граней у четырёхугольной пирамиды четыре. S осн. = а^2 - площадь основания, поскольку в основании правильной четырёхугольной пирамиды лежит квадрат. По условию эти площади равны, кроме того h=3 ah/2 = a^2 3a/2 = a^2 a^2 - 3a/2 = 0 a(a - 3/2) = 0 Это возможно, если а=0 - не подходит к условию задачи а - 3/2 = 0 а = 3/2 а = 1,5 - сторона квадратного основания.
2) S полн.пов. = а^2 + 4аh/2, где а=1,5, h=3 S полн.пов. = 1,5^2 + 4•1,5 • 3 / 2 = = 2,25 + 9 = 11,25 - площадь полной поверхности.
Таких граней у четырёхугольной пирамиды четыре.
S осн. = а^2 - площадь основания, поскольку в основании правильной четырёхугольной пирамиды лежит квадрат.
По условию эти площади равны,
кроме того h=3
ah/2 = a^2
3a/2 = a^2
a^2 - 3a/2 = 0
a(a - 3/2) = 0
Это возможно, если
а=0 - не подходит к условию задачи
а - 3/2 = 0
а = 3/2
а = 1,5 - сторона квадратного основания.
2) S полн.пов. = а^2 + 4аh/2,
где а=1,5, h=3
S полн.пов. = 1,5^2 + 4•1,5 • 3 / 2 =
= 2,25 + 9 = 11,25 - площадь полной поверхности.
ответ: 11,25.