Если заданы координаты вершин А,В,С Находим уравнение сторон АВ, ВС, АС через уравнение пряммой что проходит через две точки
либо через систему двух линейных уравней используя формулу пряммой с угловым коэффициентом
(нужно про себя отдельно віделить возможный уникальный случай когда одна из пряммых получается x=c, где с - некоторое действительное число)
Дальше используя признак перпендикулярности пряммых, по угловому коэфициенту пряммой стороны k находим углововй коєфициент высоты опущеной на эту сторону как (-1/k) - признак перпендикулярности на плоскости
А дальше используя координаты вершины с которой опущена высота , и угловой коэфициент через формулу пряммой с угловым коэфициентом находим уравнение высоты.
Решив систему уравнений, где уравнения - уравнения формул задающих пряммые высот - найдем точку пересечения высот
2. Для медиан. Находим середины сторон по формулах координат середины отрезки
Потом используем формулу пряммой проходящей через две тчоки либо системой линейных уравнеий через формулу пряммой с угловым коэффициентом, имея координаты вершины треугольника и соотвестующей середины противоположной стороны - уравнения медиан
Имея уравнеия медиан через систему уравнений находим точку пересечения медиан. (Либо найдя одну из середин сторон и координаты соотвествующей вершины памятуя что медианы делятся точкой пересечения в отношении 2:1, использовать формулу координат точки делящей отрезок в заданном отношении - но это уже на любителя)
Ежи < Белки < Зайцы
х а х+5 всего 14
если ежей 1 1 7 6
это не верно, т.к. белок должно быть меньше чем зайцев
если ежей 2 2 5 7
подходит, все условия соблюдены
если ежей 3 3 3 8
по условию не подходит Белок должно быть больше ежей
Дальше нет смысла проверять.
Вариант ответа один
Ежа 2, Белок 5, Зайцев 7
Находим уравнение сторон АВ, ВС, АС через уравнение пряммой что проходит через две точки
либо через систему двух линейных уравней используя формулу пряммой с угловым коэффициентом
(нужно про себя отдельно віделить возможный уникальный случай когда одна из пряммых получается x=c, где с - некоторое действительное число)
Дальше используя признак перпендикулярности пряммых, по угловому коэфициенту пряммой стороны k находим углововй коєфициент высоты опущеной на эту сторону как (-1/k)
- признак перпендикулярности на плоскости
А дальше используя координаты вершины с которой опущена высота ,
и угловой коэфициент через формулу пряммой с угловым коэфициентом находим уравнение высоты.
Решив систему уравнений, где уравнения - уравнения формул задающих пряммые высот - найдем точку пересечения высот
2. Для медиан.
Находим середины сторон по формулах координат середины отрезки
Потом используем формулу пряммой проходящей через две тчоки либо системой линейных уравнеий через формулу пряммой с угловым коэффициентом, имея координаты вершины треугольника и соотвестующей середины противоположной стороны - уравнения медиан
Имея уравнеия медиан через систему уравнений находим точку пересечения медиан.
(Либо найдя одну из середин сторон и координаты соотвествующей вершины памятуя что медианы делятся точкой пересечения в отношении 2:1, использовать формулу координат точки делящей отрезок в заданном отношении - но это уже на любителя)