В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
06anna11
06anna11
28.05.2021 04:48 •  Математика

Найдите промежуток возрастания функции y=-2/3x^3+1/2x^2 +3x-17

Показать ответ
Ответ:
dianaohanesian
dianaohanesian
24.04.2019 14:00

ответ:

пошаговое объяснение:

1)   находим первую производную функции:

y' = -3x²+12x+36

приравниваем ее к нулю:

-3x²+12x+36 = 0

x₁  = -2

x₂  = 6

вычисляем значения функции на концах отрезка

f(-2) = -33

f(6) = 223

f(-3) = -20

f(3) = 142

ответ:     fmin  = -33, fmax  = 142

2)  

a)  1. находим интервалы возрастания и убывания.

первая производная равна

f'(x) = -  6x+12

находим нули функции. для этого приравниваем производную к нулю

-  6x+12 = 0

откуда:

x₁  = 2

(-∞ ; 2)     f'(x) > 0     функция возрастает

(2; +∞)     f'(x) < 0функция убывает

в окрестности точки x = 2 производная функции меняет знак с (+) на (-). следовательно, точка x = 2 - точка максимума.

б)   1. находим интервалы возрастания и убывания. первая производная.

f'(x) = -12x2+12x

или

f'(x) = 12x(-x+1)

находим нули функции. для этого приравниваем производную к нулю

12x(-x+1) = 0

откуда:

x1  = 0

x2  = 1

(-∞ ; 0)     f'(x) < 0   функция убывает 

(0; 1)     f'(x) > 0     функция возрастает

  (1; +∞)     f'(x) < 0     функция убывает

в окрестности точки x = 0 производная функции меняет знак с (-) на (+). следовательно, точка x = 0 - точка минимума. в окрестности точки x = 1 производная функции меняет знак с (+) на (-). следовательно, точка x = 1 - точка максимума.

3. исследуйте функцию с производной f(x)=2x^2-3x-1

1.   d(y) = r

2.   чётность и не чётность:

f(-x) = 2(-x)² - 3*(-x) - 1 = 2x² + 3x - 1 функция поменяла знак частично. значит она ни чётная ни нечётная

3.   найдём наименьшее и наибольшее значение функции

находим первую производную функции:

y' = 4x-3

приравниваем ее к нулю:

4x-3 = 0

x₁  =  3/4

вычисляем значения функции 

f(3/4) =  -17/8

используем достаточное условие экстремума функции одной переменной. найдем вторую производную:

y'' = 4

вычисляем:

y''(3/4) = 4> 0 - значит точка x =  3/4  точка минимума функции.

4.   найдём промежутки возрастания и убывания функции:

1. находим интервалы возрастания и убывания.

первая производная равна

f'(x) = 4x-3

находим нули функции. для этого приравниваем производную к нулю

4x-3 = 0

откуда:

x₁  =  3/4

(-∞ ; 3/4)     f'(x) < 0  функция убывает

  (3/4; +∞)     f'(x) > 0     функция возрастает

в окрестности точки x = 3/4 производная функции меняет знак с (-) на (+). следовательно, точка x = 3/4 - точка минимума.

подробнее - на -

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота