Фараон — современное титульное наименование царей Древнего Египта. По-видимому, никогда не было официальным титулом, а возникло как эвфемизм, позволяющий обойтись без упоминания царского имени и официальных царских титулов, в эпоху Нового царства и особенно распространилось к середине I тыс. до н. э. Греческое слово «греч. Φαραώ» заимствовано из Библии (ивр. פַּרְעֹה, [пар‘о̄]); оригинальное египетское «per-oh» буквально означает «великий дом», то есть царский дворец. Обычным же наименованием египетских царей было выражение «принадлежащий Тростнику и Пчеле» («несу-бити»), то есть соответственно Верхнему и Нижнему Египту, либо просто «повелитель обеих земель» («небтауи»).
ответ:1. Рассмотрим △OAR: ∠OAR = 90° (так как OA — высота), ∠AOR = 15° (по условию).
По теореме о сумме углов треугольника: сумма всех внутренних углов любого треугольника равна 180°. Тогда, для △OAR:
∠OAR + ∠ARO + ∠AOR = 180°;
90° + ∠ARO + 15° = 180°;
∠ARO = 180° - 90° - 15°;
∠ARO = 75°.
2. В прямоугольнике MRKH пары сторон MR и KN, MN и RK параллельны (по определению прямоугольника)
∠ARO = ∠ONK так как они являются накрест лежащими углами, образованными при пересечении параллельных прямых MR и KN секущей RN.
Таким образом, ∠ONK = 75°.
ответ Пошаговое объяснение:
1. Рассмотрим △OAR: ∠OAR = 90° (так как OA — высота), ∠AOR = 15° (по условию).
По теореме о сумме углов треугольника: сумма всех внутренних углов любого треугольника равна 180°. Тогда, для △OAR:
∠OAR + ∠ARO + ∠AOR = 180°;
90° + ∠ARO + 15° = 180°;
∠ARO = 180° - 90° - 15°;
∠ARO = 75°.
2. В прямоугольнике MRKH пары сторон MR и KN, MN и RK параллельны (по определению прямоугольника)
∠ARO = ∠ONK так как они являются накрест лежащими углами, образованными при пересечении параллельных прямых MR и KN секущей RN.
Таким образом, ∠ONK = 75°.
ответ