Найдите расстояние(в метрах),пройденное материальной точкой за промежуток времени [0, 5] (в секундах), если ее скорость меняется по закону v(t) = 9,8t − 0,003t^2 . Определите ускорение материальной точки в конце движения.
Обозначим сторону маленького квадрата за х. Тогда площадь основания коробки будет равна S=(a-2x)^2, а объем коробки будет равен V=(a-2x)^2*x=a^2*x-4*a*x^2+4*x^3. Для нахождения максимума объема продифференцируем эту функцию по x, получим 12*x^2-8*a*x+a^2. Приравняем производную нулю и решим полученное уравнение относительно x: x1,2=(8a+/-sqrt(64a^2-48a^2))/24=(8a+/-4a)/24 x1=1/6*a x2=1/2*a Очевидно, что при x=1/2*объем коробки равен 0, и равенство производной нулю в этой точке указывает на минимум функции объема (при изменении х от 0 до 1/2*a).. А x=1/6*a является точкой максимума функции объема. ответ: сторона вырезаемого по углам квадрата должна быть равна 1/6 части стороны исходного квадрата.
Для нахождения максимума объема продифференцируем эту функцию по x, получим 12*x^2-8*a*x+a^2. Приравняем производную нулю и решим полученное уравнение относительно x:
x1,2=(8a+/-sqrt(64a^2-48a^2))/24=(8a+/-4a)/24
x1=1/6*a
x2=1/2*a
Очевидно, что при x=1/2*объем коробки равен 0, и равенство производной нулю в этой точке указывает на минимум функции объема (при изменении х от 0 до 1/2*a)..
А x=1/6*a является точкой максимума функции объема.
ответ: сторона вырезаемого по углам квадрата должна быть равна 1/6 части стороны исходного квадрата.
Периметр прямоугольного треугольника равен 60 см. Высота, проведенная к гипотенузе, равна 12 см. Найти площадь треугольника.
* * *
Площадь треугольника равна произведению радиуса r вписанной окружности на полупериметр р
Формула радиуса вписанной в прямоугольный треугольник окружности
r=(a+b-c):2 , где а и b - катеты, c -гипотенуза.
a+b=P-с=60-c
r=(60-c-c):2=30-c
По другой формуле
r=S:p
S=h*c:2
S=12*c:2=6c
р=60:2=30
r=6c/30=c/5
Приравняем найденные значения радиуса
c/5=30-c
150-5c=c
6c=150
c=25 см
r=25/5=5 см
S=r*p=5*30=150 см²