В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
тооироь
тооироь
13.01.2022 04:08 •  Математика

Найдите разность между наибольшим и наименьшим значениями функции на отрезке [1/4; 9] , y=2/x -4/sqrt(x)+7

Показать ответ
Ответ:
irushkanet
irushkanet
13.06.2020 13:39

y=\frac{2}{x}-\frac{4}{\sqrt{x}}+7\\ y'=2(-1)x^{-2}-(-\frac{1}{2})4x^{-\frac{3}{2}}=-\frac{2}{x^2}+\frac{2}{x^\frac{3}{2}}\\ -\frac{2}{x^2}+\frac{2}{x^\frac{3}{2}}=0\\ \frac{2}{x^\frac{3}{2}}=\frac{2}{x^2}\\ x^\frac{3}{2}=x^2\\ x^2\sqrt{x}-x^2=0\\ x^2(\sqrt{x}-1)=0\\ x_1=0\ \sqrt{x}=1\\ x_2=1\\ x \neq 0 = x=1\\

Точка 1 входит в интервал [1/4;9]

рисуем числовую прямую, отмечаем точки 1/4, 1, 9

Точка 1 - минимум функции.

Осталось найти максимум на этом интервале, проверяем точки 1/4 и 9.

f(1/4)=2*4-4*2+7=7

f(9)=2/9-4/3+7=53/9≈5,8

Очевидно максимум f(1/4)=7

 

Находим минимум функции

f(1)=2-4+7=5

 

разность

f(1/4)-f(1)=7-5=2

 

ответ: 2.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота