О некотором трёхзначном числе известно, что число его десятков на 3 больше числа сотен. Пусть число сотен этого числа - х, тогда число десятков - х+3. Произведение числа десятков и единиц равно 30, значит число единиц - 30/(х+3). Тогда исходное число М=100х+10(х+3)+30/(х+3) Если поменять первую и последнюю цифры числа, то получится число 1000/(х+3)+10(х+3)+х Т.к. новое число превышает исходное число на 396, то имеем 1000/(х+3)+10(х+3)+х-(100х+10(х+3)+30/(х+3))=396 3000/(х+3)+х-100х-30/(х+3)-396=0 умножим обе части уравнения на х+3 3000+х²+3х-100х²-300х-30-396х-1188=0 -99х²-396х+1782=0 х²+7х-18=0 х₁*х₂=-18 х₁+х₂=-7 х₁=2 х₂=-9 - не удовлетворяет условию задачи, т.к.цифры числа задаются натуральными числами. М=100*2+10*5+30/5=256, √М=√256=16 ответ: 16
Произведение числа десятков и единиц равно 30, значит число единиц - 30/(х+3).
Тогда исходное число М=100х+10(х+3)+30/(х+3)
Если поменять первую и последнюю цифры числа, то получится число 1000/(х+3)+10(х+3)+х
Т.к. новое число превышает исходное число на 396, то имеем
1000/(х+3)+10(х+3)+х-(100х+10(х+3)+30/(х+3))=396
3000/(х+3)+х-100х-30/(х+3)-396=0 умножим обе части уравнения на х+3
3000+х²+3х-100х²-300х-30-396х-1188=0
-99х²-396х+1782=0
х²+7х-18=0
х₁*х₂=-18
х₁+х₂=-7
х₁=2 х₂=-9 - не удовлетворяет условию задачи, т.к.цифры числа задаются натуральными числами.
М=100*2+10*5+30/5=256, √М=√256=16
ответ: 16
Решение смотрите в разделе "Пошаговое объяснение".
Пошаговое объяснение:
Взаимно простые числа - это числа, наибольший общий делитель которых равен единице.
1) 4 и 12 не являются взаимно простыми числами, так как их наибольший общий делитель ≠ 1.
НОД (4; 12) = 2 · 2 = 2² = 4
4 = 2 · 2 = 2²
12 = 2 · 2 · 3 = 2² · 3
Перемножаем общие множители обоих чисел и получаем ответ.
Таким образом, числа 4 и 12 не являются взаимно простыми.
2) 4 и 15 являются взаимно простыми числами, так как их наибольший общий делитель = 1.
НОД (4; 15) = 1
4 = 2 · 2 = 2²
15 = 5 · 3
Перемножаем общие множители обоих чисел и получаем ответ.
Таким образом, числа 4 и 15 являются взаимно простыми.
3) 6 и 22 не являются взаимно простыми числами, так как их наибольший общий делитель ≠ 1.
НОД (6; 22) = 2
6 = 2 · 3
22 = 2 · 11
Перемножаем общие множители обоих чисел и получаем ответ.
Таким образом, числа 6 и 22 не являются взаимно простыми.
4) 15 и 100 не являются взаимно простыми числами, так как их наибольший общий делитель ≠ 1.
НОД (15; 100) = 5
15 = 3 · 5
100 = 2 · 2 · 5 · 5 = 2² · 5²
Перемножаем общие множители обоих чисел и получаем ответ.
Таким образом, числа 15 и 100 не являются взаимно простыми.
5) 9 и 18 не являются взаимно простыми числами, так как их наибольший общий делитель ≠ 1.
НОД (9; 18) = 3 · 3 = 3² = 9
9 = 3 · 3 = 3²
18 = 2 · 3 · 3 = 2 · 3²
Перемножаем общие множители обоих чисел и получаем ответ.
Таким образом, числа 9 и 18 не являются взаимно простыми.
1) 16 и 25 являются взаимно простыми числами, так как их наибольший общий делитель = 1.
НОД (16; 25) = 1
16 = 2 · 2 · 2 · 2 = 2⁴
25 = 5 · 5 = 5²
Перемножаем общие множители обоих чисел и получаем ответ.
Таким образом, числа 16 и 25 являются взаимно простыми.