Воспользуемся формулой приведения для косинуса.
Из уравнения cos (пи/2 + 5x) + sin x = 2 * cos 3x получим равносильное уравнение:
-sin 5x + sin x = 2 * cos 3x, что в соответствии с формулой разности синусов равносильно:
2 * sin ((x - 5x) / 2) * cos ((x + 5x) / 2) = 2 * cos 3x.
Отсюда: sin (-2x) * cos (3x) = cos 3x, то есть cos 3x * (1 + sin 2x) = 0.
Тогда cos 3x = 0 или sin 2x = -1.
В первом случае 3x = пи/2 + 2 * пи * n, где n - целое. То есть:
x = пи/6 + 2/3 * пи * n, n ∈ Z.
Во втором случае 2x = -пи/2 + 2 * пи * k, где k - целое. То есть:
x = -пи/4 + пи * k, k ∈ Z.
ответ: x1 = пи/6 + 2/3 * пи * n, n ∈ Z; x2 = -пи/4 + пи * k, k ∈ Z.
Пошаговое объяснение:
Воспользуемся формулой приведения для косинуса.
Из уравнения cos (пи/2 + 5x) + sin x = 2 * cos 3x получим равносильное уравнение:
-sin 5x + sin x = 2 * cos 3x, что в соответствии с формулой разности синусов равносильно:
2 * sin ((x - 5x) / 2) * cos ((x + 5x) / 2) = 2 * cos 3x.
Отсюда: sin (-2x) * cos (3x) = cos 3x, то есть cos 3x * (1 + sin 2x) = 0.
Тогда cos 3x = 0 или sin 2x = -1.
В первом случае 3x = пи/2 + 2 * пи * n, где n - целое. То есть:
x = пи/6 + 2/3 * пи * n, n ∈ Z.
Во втором случае 2x = -пи/2 + 2 * пи * k, где k - целое. То есть:
x = -пи/4 + пи * k, k ∈ Z.
ответ: x1 = пи/6 + 2/3 * пи * n, n ∈ Z; x2 = -пи/4 + пи * k, k ∈ Z.
Пошаговое объяснение:
4х=-6-7 -2х=-15+8 (х:3)= -6+5 6х= -45+13
4х=-13 -2х=-7 х:3= -1 6х = -32
х=-13:4 х=-7:(-2) х= -1*3 х= -32:6
х=-3¹/₄ х=3,5 х= -1 х= -5¹/₆
8х-4х-2х=22 5(х+2)=5х+10 Ιх-5Ι=12
2х=22 10х+10=5х+10 х-5=12, х-5=-12
х=11 10х-5х=10-10 х=12+5, х= -12+5
5х=0 х=17, х= -7
х=0
Ι2х+1Ι=13
2х+1=13, 2х+1= -13
2х=13-1, 2х= -13 -1
2х=12, 2х= -14
х=12:2, х= -14:2
х=6, х= -7
Слово"ответ" к каждоме уравнению напишете сами