Данную задачу следует решать через х (икс). Для начала вспомним правила нахождения части от целого: чтобы найти часть от целого, нужно дробь, соответствующую этой части, умножить на целое. А теперь запишем решение: 1. Пусть х=кол-ву всех вещей, тогда (по правилу, указанному выше) кол-во тетрадей=две пятнадцатых икс (2/15 х), кол-во книг=восемь пятнадцатых икс (8/15 х). *Следует учесть, что икс (х) относится ко всей дроби, а не только к знаменателю*. Из данных рассуждений составим уравнение: х - 2/15 х - 8/15 х=15 Пояснение: из общего кол-во вещей вычитаем кол-во тетрадей и книг, соответственно, остаются только альбомы, чье кол-во нам известно из условия - 15 штук. Решаем уравнение: Перед икс всегда стоит 1, применительно к этому уравнению, 1 можно представить как 15/15 (15/15=1). Запишем левую часть уравнения на одной дробной черте, а правую просто перепишем: *не забываем про х* 15-2-8 / 15 х =15 Выполним вычитание в числителе дроби, переписав остальное, и получим: *не забываем про х* 5/15 х =15 Чтобы найти х, нужно 15 разделить на 5/15. По правилу деления дробей, 15 умножаем на 15, и полученное выражение делим на пять. В итоге получается 45. Следовательно, х=45. Помним, что х - общее кол-во вещей. Теперь пролистаем чуть выше и найдем выражения: кол-во тетрадей=две пятнадцатых икс (2/15 х), кол-во книг=восемь пятнадцатых икс (8/15 х). Получаем, 2/15 * 45=6 (кол-во тетрадей); 8/15 * 45=24 (кол-во книг). ответ: всего - 45 вещей; тетрадей - 6 штук; книг - 24 штуки
7:2=3,5 (боч.) - количество мёда в 7 "половинках" 7+3,5=10,5 (боч.) - общее количество мёда 10,5:3=3,5 (боч.) - мёда должен получить каждый Каждый взял по 7 бочонков и мёда, равного по объёму 3,5 (3 с половиной) бочонкам. Надо представить 3,5 в виде суммы, состоящей из семи слагаемых, причём слагаемыми могут быть числа 1, 0,5 и 0, где 1 - полный бочонок мёда, 0,5 - полбочонка мёда, 0 - пустой бочонок 3,5=1+1+1+0,5+0+0+0 3,5=1+0,5+0,5+0,5+0,5+0,5+0 3,5=1+1+1+0,5+0+0+0 1-ый вариант: двое взяли по 3 полных, по 1 "половинке" и по 3 пустых бочонка; третий взял 1 полный, 5 "половинок" и 1 пустой бочонок. 3,5=1+1+0,5+0,5+0,5+0+0 3,5=1+1+1+0,5+0+0+0 3,5=1+1+0,5+0,5+0,5+0+0 2-ой вариант: двое взяли по 2 полных, по 3 "половинки" и по 2 пустых бочонка; третий взял 3 полный, 1 "половинку" и 3 пустых бочонка.
Для начала вспомним правила нахождения части от целого: чтобы найти часть от целого, нужно дробь, соответствующую этой части, умножить на целое.
А теперь запишем решение:
1. Пусть х=кол-ву всех вещей, тогда (по правилу, указанному выше) кол-во тетрадей=две пятнадцатых икс (2/15 х), кол-во книг=восемь пятнадцатых икс (8/15 х). *Следует учесть, что икс (х) относится ко всей дроби, а не только к знаменателю*.
Из данных рассуждений составим уравнение:
х - 2/15 х - 8/15 х=15
Пояснение: из общего кол-во вещей вычитаем кол-во тетрадей и книг, соответственно, остаются только альбомы, чье кол-во нам известно из условия - 15 штук.
Решаем уравнение:
Перед икс всегда стоит 1, применительно к этому уравнению, 1 можно представить как 15/15 (15/15=1).
Запишем левую часть уравнения на одной дробной черте, а правую просто перепишем: *не забываем про х*
15-2-8 / 15 х =15
Выполним вычитание в числителе дроби, переписав остальное, и получим: *не забываем про х*
5/15 х =15
Чтобы найти х, нужно 15 разделить на 5/15.
По правилу деления дробей, 15 умножаем на 15, и полученное выражение делим на пять. В итоге получается 45.
Следовательно, х=45.
Помним, что х - общее кол-во вещей. Теперь пролистаем чуть выше и найдем выражения:
кол-во тетрадей=две пятнадцатых икс (2/15 х), кол-во книг=восемь пятнадцатых икс (8/15 х).
Получаем, 2/15 * 45=6 (кол-во тетрадей); 8/15 * 45=24 (кол-во книг).
ответ: всего - 45 вещей; тетрадей - 6 штук; книг - 24 штуки