В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
пОмО0гите
пОмО0гите
04.06.2020 14:54 •  Математика

Найдите то значение ⁴√-4 , главное значение аргумента которого максимально. в ответе укажите его вещественную часть

Показать ответ
Ответ:
ashbringer12332
ashbringer12332
17.08.2020 09:51

\sqrt[4]{z}=\sqrt[4]{-4}\\\\z=-4+0\cdot i\; \; \to \; \; |z|=\sqrt{(-4)^2+0^2}=4\\\\cos\varphi =-1\; \; ,\; \; sin\varphi =0\; \; \Rightarrow \; \; \varphi =\pi \\\\z=4\cdot (cos\pi +i\, sin\pi )\\\\\sqrt[4]{z}=\sqrt[4]{4}\cdot \Big (cos\frac{\pi +2\pi k}{4}+i\cdot sin\frac{\pi +2\pi k}{4}\Big )\; ,\; k=0,1,2,3;\; \sqrt[4]4=\sqrt[4]{2^2}=\sqrt2\\\\k=0:\; w_0=\sqrt[4]4\cdot \Big (cos\frac{\pi }{4}+i\cdot sin\frac{\pi }{4}\Big )\; ,\; w_0=\sqrt2\cdot (\frac{\sqrt2}{2}+i\cdot \frac{\sqrt2}{2})=1+i\\\\k=1:\; w_1=\sqrt[4]4\cdot \Big (cos\frac{3\pi }{4}+i\cdot sin\frac{3\pi }{4}\Big )\; ,\; w_1=\sqrt2\cdot (-\frac{\sqrt2}{2}+i\cdot \frac{\sqrt2}{2})=-1+i

k=2:\; w_2=\sqrt[4]4\cdot \Big (cos\frac{5\pi }{4}+i\cdot sin\frac{5\pi }{4}\Big )\; ,\; w_2=\sqrt2\cdot (-\frac{\sqrt2}{2}-i\cdot \frac{\sqrt2}{2}=-1-i\\\\k=3:\; w_3=\sqrt[4]4\cdot \Big (cos\frac{7\pi }{4}+i\cdot sin\frac{7\pi }{4}\Big )\; ,\; w_3=\sqrt2\cdot (\frac{\sqrt2}{2}-i\cdot \frac{\sqrt2}{2})=1-i\\\\Otvet:\; \; Re\, w_3=\sqrt2\cdot \frac{\sqrt2}{2}=1\; .

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота