Передние зубы — резцы (от 1 до 5 пар в каждой половине верхней и нижней челюсти) долотовидной формы, служат для захватывания и разрезания пищи; следующие за ними клыки (1 пара) конусовидные, служат для захватывания и разрывания пищи (у хищных) и являются орудием защиты (у всеядных парно- и непарнокопытных, некоторых ластоногих и китообразных). Задние зубы — коренные (до 8 пар), имеют сложную форму и служат для перетирания пищи; среди коренных различают предкоренные, или ложнокоренные (3—4 пары), и истинно коренные (3—4 пары), снабженные 2 или более корнями. Разрывать кусок мяса лучше клыками, грызть яблоко - резцами, пережевывать - коренными, о есть, жевательными
ак построить график функции y=ctg x? Для начала рассмотрим график котангенса на интервале (0;π).
Для удобства округлим число π до целого:

Длину единичного отрезка возьмём равной двум клеточкам тетради. В этом случае числу π соответствует отрезок длиной 6 клеточек,числу π/2 — 3 клеточки, π/6 — 1 клеточка, π/4 — 1,5 клеточки, π/3 — 2 клеточки.
В область определения функции y=ctg x не входят числа

Прямые

являются вертикальными асимптотами графика котангенса, то есть график к ним стремиться, но никогда не достигнет. Асимптоты изображают пунктирными линиями.
Составим таблицу значений котангенса на промежутке (0;π/2]:
На координатной плоскости отмечаем полученные точки.
На интервале (0;π) график котангенса симметричен относительно точки (π/2;0):
Так как y=ctg x — периодическая функция с периодом T=π, график котангенса, взятый на интервале (0;π), повторяется бесконечное число вправо, на плюс бесконечность, и влево, на минус бесконечность:
Графики функций, в том числе, график котангенса, в алгебре используют при решении уравнений, неравенств и других заданий.
Разрывать кусок мяса лучше клыками, грызть яблоко - резцами, пережевывать - коренными, о есть, жевательными
ак построить график функции y=ctg x? Для начала рассмотрим график котангенса на интервале (0;π).
Для удобства округлим число π до целого:

Длину единичного отрезка возьмём равной двум клеточкам тетради. В этом случае числу π соответствует отрезок длиной 6 клеточек,числу π/2 — 3 клеточки, π/6 — 1 клеточка, π/4 — 1,5 клеточки, π/3 — 2 клеточки.
В область определения функции y=ctg x не входят числа

Прямые

являются вертикальными асимптотами графика котангенса, то есть график к ним стремиться, но никогда не достигнет. Асимптоты изображают пунктирными линиями.
Составим таблицу значений котангенса на промежутке (0;π/2]:
На координатной плоскости отмечаем полученные точки.
На интервале (0;π) график котангенса симметричен относительно точки (π/2;0):
Так как y=ctg x — периодическая функция с периодом T=π, график котангенса, взятый на интервале (0;π), повторяется бесконечное число вправо, на плюс бесконечность, и влево, на минус бесконечность:
Графики функций, в том числе, график котангенса, в алгебре используют при решении уравнений, неравенств и других заданий.