В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
reprto345mak
reprto345mak
23.03.2020 21:54 •  Математика

Найдите вероятность того, что выбранное наугад одно число из 10, 11, ..., 199 кратно 3

Показать ответ
Ответ:
angel0000l
angel0000l
06.02.2022 09:48

1)Найдем, на какую величину за каждый час сокращается расстояние между данными отрядами.

Согласно условию задачи, отряд номер 1 за 60 минут преодолевает расстояние, равное 4 км, а отряд номер 2 за тот же промежуток времени преодолевает 5 км.

По условию задачи, два отряда туристов движутся навстречу друг другу, следовательно, каждые 60 минут расстояние между ними уменьшается на 4 + 5 = 9 км.

Поскольку расстояние между туристическими базами, из которых стартовали отряды составляет 27 км, то отряды встретятся через 27 / 9 = 3 часа.

ответ: отряды встретятся через 3 часа.

Пошаговое объяснение:

0,0(0 оценок)
Ответ:
Igor599
Igor599
02.04.2020 12:53
[[ I ]]

Для начала, нам потребуется рассмотреть точки выпуклого восьмиугольника (!), при этом неважно – правильный он или нет, главное, чтобы он был – выпуклый. Рисунок 1.

Кроме того, рассмотрим все ломанные, а не только несамопересекающиеся, т.е. и замкнутые и, возможно, самопересекающиеся.

Нарисуем произвольную ломанную. Получим конструкцию, в которой каждая точка лежит на конце двух отрезков, поэтому на всех точках кончается 16 отрезков, однако, поскольку каждый отрезок кончается на двух точках, то значит всего отрезков в такой конструкции ровно 8. Такая конструкция будет представлять собой замкнутую и, возможно, самопересекающуюся восьмизвенную (!) ломанную. Рисунок 2.

Теперь сотрём один из отрезков этой неправильной ломанной и получим НЕЗАМКНУТУЮ, но, возможно, самопересекающуюся ломанную у которой как раз 7 звеньев ! Рисунок 3.

Значит, если из 8 точек: в 6 провести по два отрезка, а на двух остальных окончить только по одному отрезку – то получается 7-звенная ломаная, правда, возможно самопересекающаяся.

Т.е., если все из 8 (!) точек использовать, то получается как раз семизвенная незамкнутая ломанная. Как же её построить так, чтобы она не имела самопересечений?

Введём в рассуждение такой термин – edgefree (крайняя-свободная), и поясним, что он означает. Рисунок 4. Пусть уже какое-то количество точек использовано в ломанной, и мы стоим перед выбором, куда провести следующее звено, и перед нами есть, например 5 точек. Встанем к использованным трём точкам "задом", а к неиспользованным "передом". Все они перед нами будут, как под прицелом – расположенные в некоторой последовательности. Крайняя по левую руку и крайняя по правую и будут – точками edgefree.

Если дальше мы выберем не edgefree, а какие-то другие точки (рисунок 5), то следующим звеном мы разделим всё множество оставшихся точек на 2 группы: те, что слева от новой точки (зелёная область), и те, что справа (красная область). И проведя такое новое неправильное звено, попадём в ловушку, так как нам нужно будут использовать все точки и из левой и из правой групп, а сделать это, не пересекая последнее проведённое нами звено, будет уже невозможно.

Значит, каждый раз, при построении 7-звенной ломанной в выпуклом восьмиугольнике (!), у нас есть только две возможности выбрать следующую точку: левая или правая edgefree. Важно отметить, что когда выбрано уже 7 точек в восьмиугольнике – остаётся только одна точка (!), она, конечно же, edgefree точка, но она только одна (!) и выбрать её из двух вариантов уже нельзя.

Учитывая всё сказанное, получаем:
1. Первую точку можно выбрать 8-мью
2. Вторую точку можно выбрать 2-мя
3. Третью точку можно выбрать 2-мя
 . . .
6. Шестую точку можно выбрать 2-мя
7. Седьмую точку можно выбрать 2-мя
8. Восьмую точку можно выбрать только одним т.к. она единственна.

Значит всего несамопересекающихся незамкнутых семизвенных ломанных в восьмиугольнике (!) можно провести: 8 \cdot 2^6 \cdot 1 = 2^9 = 512 Однако, поскольку у ломанной два конца, то будут получаться "парные" одинаковые ломанные, у которых голова и хвост поменяны местами.

В итоге получаем: 256 вариантов.

[[ II ]]

Теперь, чтобы решить исходную задачу, вычеркнем из 9 заданных точек одну! И мы как раз получим 8 точек, на которых будет расположен выпуклый восьмиугольник. Всего из девятиугольника можно вычеркнуть одну точку 9-ью

Поэтому окончательный ответ должен быть в 9 раз больше вычисленного в пункте [I]. Всего 9 \cdot 256 = 2560 - 256 = 2304 провести семизвенную несамопересекающуюся ломаную.

О т в е т : 2304 .

Отметили все вершины правильного девятиугольника. сколько существует незамкнутых несамопересекающихс
Отметили все вершины правильного девятиугольника. сколько существует незамкнутых несамопересекающихс
Отметили все вершины правильного девятиугольника. сколько существует незамкнутых несамопересекающихс
Отметили все вершины правильного девятиугольника. сколько существует незамкнутых несамопересекающихс
Отметили все вершины правильного девятиугольника. сколько существует незамкнутых несамопересекающихс
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота