В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ruslanbaxsiev79
ruslanbaxsiev79
24.08.2022 08:20 •  Математика

Найдите все такие значения параметра a, при каждом из которых уравнение 2x^3+(3a+2)*x^2+ax-3a^2=0 имеет ровно два различных действительных корня

Показать ответ
Ответ:
khydyrov1404
khydyrov1404
28.01.2024 13:27
Для решения данной задачи, нам необходимо найти все значения параметра a, при каждом из которых уравнение имеет ровно два различных действительных корня.

Шаг 1: Найдем дискриминант кубического уравнения D.

Для кубического уравнения вида ax^3+bx^2+cx+d=0, дискриминант D определяется по формуле:
D = 18abcd - 4b^3d + b^2c^2 - 4ac^3 - 27a^2d^2

В нашем случае, a = 2, b = 3a+2, c = a, d = -3a^2. Подставляя значения, получим:
D = 18(2)(3a+2)(a)(-3a^2) - 4(3a+2)^3(-3a^2) + (3a+2)^2(a)^2 - 4(2)(a)^3 - 27(2)^2(-3a^2)^2

Сокращаем и упрощаем выражение:
D = -216a^6 - 648a^5 - 736a^4 - 576a^3 - 1616a^2 - 192a

Шаг 2: Найдем условия для двух различных действительных корней.

Условие для двух различных действительных корней кубического уравнения выполняется, если либо D > 0, либо D = 0 и уравнение имеет два вещественных корня с кратностями.

Шаг 3: Решим неравенство D > 0.

-216a^6 - 648a^5 - 736a^4 - 576a^3 - 1616a^2 - 192a > 0

Чтобы решить это неравенство, проводим графический анализ для получения промежутков, на которых неравенство выполнено.

Шаг 4: Найдем точки пересечения с осью абсцисс (a-осью).

Для этого приравниваем D к нулю:
-216a^6 - 648a^5 - 736a^4 - 576a^3 - 1616a^2 - 192a = 0

Решив данное уравнение, мы получаем значения параметра a, при которых уравнение имеет два различных действительных корня с кратностями.

Шаг 5: Подставим полученные значения параметра a в исходное уравнение.

2x^3+(3a+2)*x^2+ax-3a^2=0

Проверим, что при данных значениях параметра a, уравнение имеет два различных действительных корня. Для этого можем воспользоваться формулой Декарта: P/Q.

Если P > 0 и Q > 0, то оба корня будет положительными.
Если P < 0 и Q > 0, то один корень будет отрицательным, а другой - положительным.
Если P > 0 и Q < 0, то один корень будет положительным, а другой - отрицательным.

Получив значения корней, можем проверить выполнение условия двух различных действительных корней.

В результате обозначенных шагов, можно найти все значения параметра a, при которых уравнение 2x^3+(3a+2)*x^2+ax-3a^2=0 имеет ровно два различных действительных корня.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота