В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Kate200005
Kate200005
18.08.2021 15:50 •  Математика

Найдите все значения a, при каждом из которых уравнение \sqrt[]{x^4+x^2} =x^2-a имеет ровно два различных корня.

Показать ответ
Ответ:
Kristina052602
Kristina052602
29.05.2020 13:30

Заметим, что, если x₀(a) - решение данного уравнения, то -x₀(a) также является решением уравнения. Поэтому при всех a таких, что x≠0, уравнение имеет не менее двух решений. Отсюда легко вывести, что a≠0;

Сделаем замену: m=x²; Так как m+m²≥0, то исходное уравнение (относительно m) равносильно следующему:

m+m^{2}=m^{2}-2am+a^{2} \Leftrightarrow m=\frac{a^{2}}{1+2a}; Мы видим, что уравнение имеет единственное решение относительно m для данного a (при всех a, при которых выражение имеет смысл); Значит уравнение относительно x имеет ровно два решения. Осталось рассмотреть случай:

1+2a≠0 ⇔ a≠-0.5;

ОТВЕТ: a\in \mathbb{R}\backslash (\{0\}\cup \{-\frac{1}{2}\})

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота