В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
RMaGaR
RMaGaR
09.08.2020 21:23 •  Математика

Найдите все значения a, при которых произведение корней уравнения x^2−(2a+1)x+a^2−a−2=0 равно 4.

Показать ответ
Ответ:
alexalu0402
alexalu0402
17.08.2020 08:51
X²-(2a+1)x+(a²-a-2)=0
x²-px+q=0
По теореме Виета:
х1+х2=-p
x1×x2=q
по условию найти а, при которых х1×х2=4
=(a²-a-2)=x1×x2=4
a²-a-2=4
a²-a-2-4=0
a²-a-6=0
По теореме Виета:
a1+a2=(-(-1))=1
a1×a2=-6

a1=-2
a2=3

Проверка:

x²-(2×a1+1)x+((a1)²-a1-2)=0
x²-(2×(-2)+1)x+((-2)²-(-2)-2)=0
x²-(-4+1)x+(4+2-2)=0
x²-(-3)x+4=0
х²+3х+4=0
По теореме Виета:
х1+х2=-3
х1×х2=4-соответствует условию нашей задачи

х²-(2×а2+1)х+((а2)²-а2-2)=0
х²-(2×3+1)х+(3²-3-2)=0
х²-7x+4=0
По теореме Виета:
х 1+х2=-(-7)=7
х1×х2=4-соответствует условию нашей задачи.

ответ: Уравнение x²-(2a+1)x+(a²-a-2)=0, при а1=-2 и а2=3, произведение корней уравнения, х1×х2=4.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота