В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Dima340
Dima340
07.03.2021 17:17 •  Математика

Найдите все значения параметра a для которых система неравенств имеет решения 5x ^ 2 - 4xy + 3y ^ 2 >= 3
7x^ 2 +4xy+2y^ 2 <= (2a-1 )/(2a+5 )

Показать ответ
Ответ:
krnshlpn
krnshlpn
08.04.2023 18:08

ответ: x∈[-2;4].

Пошаговое объяснение:

1) Составляем выражение для отношения a(n+1)/a(n), где a(n+1) и a(n) - соответственно n+1 - й и n - ный члены ряда: a(n+1)/a(n)=(x-1)*(3*n-1)²/[3*(3*n+2)²].

2) Составляем выражение для модуля этого отношения. Так как (3*n-1)²>0 и 3*(3*n+2)²>0, то /a(n+1)/a(n)/=/x-1/*(3*n-1)²/[3*(3*n+2)²].

3) Находим предел этого выражения при n⇒∞: lim /a(n+1)/a(n)/=1/3*/x-1/, так как lim (3*n-1)²/[3*(3*n+2)²]=1/3.

4) Составляем и решаем неравенство 1/3*/x-1/<1. Оно имеет решение -2<x<4, то есть x∈(-2;4). Поэтому -2<x<4 - интервал сходимости ряда.

5)  Остаётся исследовать поведение ряда на концах этого интервала.

а) если x=-2, то ряд принимает вид (-1)^n/[(3*n-1)²]. Так как /(-1)^n/[(3*n-1)²]/=1/[(3*n-1)²]<1/n², а ряд обратных квадратов сходится, то в точке x=-2 данный ряд тоже сходится, причём - абсолютно.

б) если x=4, то ряд принимает вид 1/[(3*n-1)²]. Как только что было показано, данный ряд сходится - значит, данный ряд сходится и в этой точке. Поэтому областью сходимости ряда является интервал x∈[-2;4].    

0,0(0 оценок)
Ответ:
sinyavska1988
sinyavska1988
08.04.2023 18:08

ответ: x∈[-2;4].

Пошаговое объяснение:

1) Составляем выражение для отношения a(n+1)/a(n), где a(n+1) и a(n) - соответственно n+1 - й и n - ный члены ряда: a(n+1)/a(n)=(x-1)*(3*n-1)²/[3*(3*n+2)²].

2) Составляем выражение для модуля этого отношения. Так как (3*n-1)²>0 и 3*(3*n+2)²>0, то /a(n+1)/a(n)/=/x-1/*(3*n-1)²/[3*(3*n+2)²].

3) Находим предел этого выражения при n⇒∞: lim /a(n+1)/a(n)/=1/3*/x-1/, так как lim (3*n-1)²/[3*(3*n+2)²]=1/3.

4) Составляем и решаем неравенство 1/3*/x-1/<1. Оно имеет решение -2<x<4, то есть x∈(-2;4). Поэтому -2<x<4 - интервал сходимости ряда.

5)  Остаётся исследовать поведение ряда на концах этого интервала.

а) если x=-2, то ряд принимает вид (-1)^n/[(3*n-1)²]. Так как /(-1)^n/[(3*n-1)²]/=1/[(3*n-1)²]<1/n², а ряд обратных квадратов сходится, то в точке x=-2 данный ряд тоже сходится, причём - абсолютно.

б) если x=4, то ряд принимает вид 1/[(3*n-1)²]. Как только что было показано, данный ряд сходится - значит, данный ряд сходится и в этой точке. Поэтому областью сходимости ряда является интервал x∈[-2;4].    

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота