В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
trololoshka25
trololoshka25
04.04.2023 05:15 •  Математика

Найдите все значения параметра а, при каждом из которых выполняется неравенство ||x−2a|+3a|+||3x+a|−4a|=< 5x+24

Показать ответ
Ответ:
gidfgwlr
gidfgwlr
03.10.2020 14:54
Пусть f(x)=||x−2a|+3a|+||3x+a|−4a|−(5x+24)f(x)=||x−2a|+3a|+||3x+a|−4a|−(5x+24). Согласно условию, должно выполняться неравенство f(−4)≤0f(−4)≤0. Это означает, что ||2a+4|+3a|+||a−12|−4a|≤4||2a+4|+3a|+||a−12|−4a|≤4. Рассматривая левую часть неравенства на промежутках, на которую числа −2−2, −0,8−0,8, 2,42,4 разбивают числовую прямую, нетрудно убедиться в том, что она принимает наименьшее значение 16 на отрезке a∈[−0,8;2,4]a∈[−0,8;2,4], а при остальных значениях aa левая часть больше 16. Поэтому ни при каком aa неравенство из условия не может быть верно даже для x=−4x=−4. Тем более, оно не может выполняться для всех x∈[−4;3]x∈[−4;3]. Это значит, что a∈∅a∈∅.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота