В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
мамадочп4а
мамадочп4а
26.01.2020 20:18 •  Математика

Найдите все значения x больше1, при каждом из которых наибольшее из двух чисел a=log₂x + 21 logx 32 (x снизу) -2 и b=41- log₂² x больше 5

Показать ответ
Ответ:
SoktoevTimur
SoktoevTimur
02.10.2020 17:25
A = log_2 (x) + 21*log_x (32) - 2 = log_2 (x) + 21*log_x (2^5) - 2 =
= log_2 (x) + 105*log_x (2) - 2 = log_2 (x) + 105 / log_2 (x) - 2
B = 41 - (log_2 (x))^2 = 41 - log_2 (x)*log_2 (x)
1) Пусть A > B.
log_2 (x) + 105 / log_2 (x) - 2 > 41 - log_2 (x)*log_2 (x) 
Замена  log_2 (x) = y
Если x > 1, то y = log_2 (x) > 0
y + 105/y - 2 > 41 - y^2
y^2 + y - 43 + 105/y > 0
При умножении на y > 0 знак неравенства не меняется.
y^3 + y^2 - 43y + 105 > 0
F(0) = 105 > 0
Точка минимума
3y^2 + 2y - 43 = 0
D/4 = 1 + 3*43 = 130
y = (-1 + √130)/3 ~ 3,467; F(y) = 9,61 > 0
Значит, при y > 0 это верно для всех x > 1
Нам надо найти, при каких х будет A > 5
log_2 (x) + 105 / log_2 (x) - 2 > 5
Замена  log_2 (x) = y 
y + 105 / y - 7 > 0
y^2 - 7y + 105 > 0
D = 7^2 - 4*105 < 0
Это тоже верно при любом y.

2) Пусть B > A
log_2 (x) + 105 / log_2 (x) - 2 < 41 - log_2 (x)*log_2 (x) 
Решая аналогично, получаем
y^3 + y^2 - 43y + 105 < 0
При y > 0 это неравенство решений не имеет.

ответ: при любом x > 1
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота