Пусть Петя в первый день решил x задач. Тогда в оставшиеся дни он решил x + 2, x + 4, x + 6, x + 8 задач. Всего в сборнике оказывается 5x + 20 задач. Вася в первый день решил x – 1 задачу. В следующие дни он решал x, x + 1, x + 2, x + 3, x + 4, ... задач. За пять дней решить все задачи Вася не мог. Если Вася решил все задачи сборника за шесть дней, то он решил 6x + 9 задач. Уравнение 5x + 20 = 6x + 9 имеет решение x = 11. Тем самым приведен пример, удовлетворяющий условию: Вася решил в первый день 10 задач, Петя — 11 задач
Произведение 16 можно составить из разных натруральных чисел только двумя
I.
II.
Поскольку это должны быть минимальные числа, то остальные числа могут быть только больше.
I* В первом случае остальные числа могут быть только больше т.е.:
Но произведение даже
И произведение любых двух чисел, больших, чем каждое – будет, очевидно, больше чем т.е. больше а значит, при выборе минимальных чисел в виде и – подобрать остальные числа невозможно.
II* Во втором случае остальные числа могут быть только больше т.е.:
Рассмотрим разложение на множители числа
На подойдут только числа, большие восьми и не равные друг другу, т.е. и
Таким образом Вася выбрал числа и
В диапазон между и Вася никаких чисел добавить не мог бы, поскольку тогда минимальные числа стали бы другими, и их произведение уже не было бы
Между и никаких натуральных чисел нет.
В диапазон между и Вася тоже никаких чисел добавить не мог бы, поскольку тогда максимальные числа стали бы другими, и их произведение уже не было бы
Пусть Петя в первый день решил x задач. Тогда в оставшиеся дни он решил x + 2, x + 4, x + 6, x + 8 задач. Всего в сборнике оказывается 5x + 20 задач. Вася в первый день решил x – 1 задачу. В следующие дни он решал x, x + 1, x + 2, x + 3, x + 4, ... задач. За пять дней решить все задачи Вася не мог. Если Вася решил все задачи сборника за шесть дней, то он решил 6x + 9 задач. Уравнение 5x + 20 = 6x + 9 имеет решение x = 11. Тем самым приведен пример, удовлетворяющий условию: Вася решил в первый день 10 задач, Петя — 11 задач
только двумя
I.
II.
Поскольку это должны быть минимальные числа,
то остальные числа могут быть только больше.
I* В первом случае остальные числа могут быть только больше т.е.:
Но произведение даже
И произведение любых двух чисел, больших, чем каждое – будет, очевидно, больше чем т.е. больше а значит, при выборе минимальных чисел в виде и – подобрать остальные числа невозможно.
II* Во втором случае остальные числа могут быть только больше т.е.:
Рассмотрим разложение на множители числа
На подойдут только числа, большие восьми и не равные друг другу,
т.е. и
Таким образом Вася выбрал числа и
В диапазон между и Вася никаких чисел добавить не мог бы, поскольку тогда минимальные числа стали бы другими, и их произведение уже не было бы
Между и никаких натуральных чисел нет.
В диапазон между и Вася тоже никаких чисел добавить не мог бы, поскольку тогда максимальные числа стали бы другими, и их произведение уже не было бы
Сумма всех Васиных чисел:
О т в е т :