Найдите высоту правильной четырехугольной пирамиды. Найдите высоту правильной четырехугольной пирамиды, если ребро основания равно 6 см, а объем равен 108 см3.
Испытания Бернулли: пусть есть n независимых испытаний, вероятность успеха в каждом из них равна p, вероятность неудачи q = 1 - p. Тогда вероятность того, что будет ровно k успехов равна C(n, k) p^k q^(n - k), где C(n, k) - биномиальный коэффициент C(n, k) = n! / (k! (n - k)!)
В обоих случаях будем искать вероятность того, что описанное в условии не произойдет - так проще.
а) Противоположное событие: произвошло меньше 4 неправильных соединений (т.е. 0, 1, 2 или 3).
Уравнение имеет один корень, если его дискриминант равен нулю.
дискриминант этого уравнения равен 4-4*(-a²+2a)=4+4а²-8а=
4*(а-1)²
4*(а-1)²=0⇒а=1
Проверим x²-2x-a²+2a=0
х²-2х-1+2=0
(х-1)²=0⇒х=1, корень один, и он положительный.
это как частный случай. если же сгруппировать члены левой части, то x²-2x-a²+2a=0
(x²-a²)-2(х-a)=0; (х-а)(х+а)-2(х-a)=0; (х-а)(х+а-2)=0
х=а, тогда x²-2x-х²+2х=0; получили 0=0, но надо отобрать только те а, которые положительны.
х+а-2=0
х=2-а
2-а>0 a<2
Если а больше двух, то получим отрицательный корень, если равен двум, то нуль.
ответ х=а, при условии, что а>0, х=2-а, если a<2
Пошаговое объяснение:
Испытания Бернулли: пусть есть n независимых испытаний, вероятность успеха в каждом из них равна p, вероятность неудачи q = 1 - p. Тогда вероятность того, что будет ровно k успехов равна C(n, k) p^k q^(n - k), где C(n, k) - биномиальный коэффициент C(n, k) = n! / (k! (n - k)!)
В обоих случаях будем искать вероятность того, что описанное в условии не произойдет - так проще.
а) Противоположное событие: произвошло меньше 4 неправильных соединений (т.е. 0, 1, 2 или 3).
P(не было неудачных) = (1 - 0,02)^150 = 0.98^150 = 0.0483
P(одно неудачное) = 150 * (1 - 0,02)^149 * 0.02 = 0.1478
P(два неудачных) = 150 * 149 / 2 * (1 - 0,02)^148 * 0.02^2 = 0.2248
P(3) = 150 * 149 * 148 / 6 * (1 - 0.02)^147 * 0.02^3 = 0.2263
P(<4) = 0.0483 + 0.1478 + 0.2248 + 0.2263 = 0.647
P(>=4) = 1 - 0.647 = 0.353
б) всё точно также, только не надо учитывать P(4).
P(<=2) = P(0) + P(1) + P(2) = 0.0483 + 0.1478 + 0.2248 = 0.421
P(>2) = 1 - 0.421 = 0.579
Можно сравнить точные результаты с приближенными. Тут можно вопрольззоваться теоремой Пуассона, P(k) = (np)^(-k) / k! * exp(-np).
Легко проверить, что в этом приближении P(<=2) = 0.423... (ошибка в третьем знаке после запятой), P(<=3) = 0.64723... (ошибка в пятом знаке)