Пошаговое объяснение:
Объём прямого кругового цилиндра равен:
V = π * r^2 * h
(где r — радиус основания, h — высота, π ~ 3.14).
Примем диаметр цилиндра за В. Из рисунка и условий задачи ясно, что В = а.
Из рисунка и условий задачи следует, что высота цилиндра h = a
Из условий задачи – осевое сечение цилиндра есть квадрат, площадь которого равняется 36 см.
Отсюда, сторона квадрата равна квадратному корню из 36 (так как площадь квадрата равна квадрату его стороны) – отсюда, сторона квадрата равна 6 см.
Следовательно, диаметр цилиндра В = а = 6 см, его радиус r = а / 2 = 6 / 2 = 3 см
Высота цилиндра h = а = 6 см.
Отсюда, по формуле объёма цилиндра:
V = 3,14 * 3^2 * 6 = 3,14 * 9 * 6 = 169,56
Объём цилиндра равен 169,56 куб. см, что и требовалось определить!
Надо определить функцию зависимости площади заданного прямоугольника от величины его сторон на катетах.
Пусть х - сторона на катете 2, а у - сторона на катете 4.
Из подобия треугольников с остатками сторон на катетах получаем:
у/(2 - х) = (4 - у)/х.
ху = (2 - х)(4 - у) = 8 - 4х - 2у + ху.
8 - 4х - 2у = 0.
Отсюда находим зависимость у от х: у = 4 - 2х.
Получаем формулу площади искомого прямоугольника:
S = xy = x(4 - 2x) = 4x - 2x².
Производная S' = 4 - 4x = 0. Это экстремум функции. х = 4/4 = 1.
Определяем знаки производной левее и правее точки х = 1.
х = 0,5 1 1,5
y' = 2 0 -2. Как видим, в точке х = 1 максимум.
у = 4 - 2*1 = 4 - 2 = 2.
ответ: вписанный прямоугольник имеет стороны 1 и 2.
Пошаговое объяснение:
Объём прямого кругового цилиндра равен:
V = π * r^2 * h
(где r — радиус основания, h — высота, π ~ 3.14).
Примем диаметр цилиндра за В. Из рисунка и условий задачи ясно, что В = а.
Из рисунка и условий задачи следует, что высота цилиндра h = a
Из условий задачи – осевое сечение цилиндра есть квадрат, площадь которого равняется 36 см.
Отсюда, сторона квадрата равна квадратному корню из 36 (так как площадь квадрата равна квадрату его стороны) – отсюда, сторона квадрата равна 6 см.
Следовательно, диаметр цилиндра В = а = 6 см, его радиус r = а / 2 = 6 / 2 = 3 см
Высота цилиндра h = а = 6 см.
Отсюда, по формуле объёма цилиндра:
V = 3,14 * 3^2 * 6 = 3,14 * 9 * 6 = 169,56
Объём цилиндра равен 169,56 куб. см, что и требовалось определить!
Надо определить функцию зависимости площади заданного прямоугольника от величины его сторон на катетах.
Пусть х - сторона на катете 2, а у - сторона на катете 4.
Из подобия треугольников с остатками сторон на катетах получаем:
у/(2 - х) = (4 - у)/х.
ху = (2 - х)(4 - у) = 8 - 4х - 2у + ху.
8 - 4х - 2у = 0.
Отсюда находим зависимость у от х: у = 4 - 2х.
Получаем формулу площади искомого прямоугольника:
S = xy = x(4 - 2x) = 4x - 2x².
Производная S' = 4 - 4x = 0. Это экстремум функции. х = 4/4 = 1.
Определяем знаки производной левее и правее точки х = 1.
х = 0,5 1 1,5
y' = 2 0 -2. Как видим, в точке х = 1 максимум.
у = 4 - 2*1 = 4 - 2 = 2.
ответ: вписанный прямоугольник имеет стороны 1 и 2.