Пусть функция определена на множестве E Пусть где . Понятно, что для любого на области от (то есть: ) выполняется . Следовательно, для , выполняется .
Получили, что для любого есть , на области которой выполняется (Проще говоря: ). Следовательно - . Что и требовалось доказать. Для нужно отдельно доказать предел .
Теперь в чём проблема самого вопроса: мы только что доказали непрерывность функции на любом подмножестве . Но! Множество натуральных чисел тоже подмножество , значит тоже непрерывна, получается - доказали что непрерывна на области определения? Известно, что тоже непрерывна на области определения, но , понятное дело, не определена на ! Потому вопрос, ИМХО, поставлен не верно (претензия не к тебе, а скорее к преподавателям твоим). Правильно задать вопрос указывая то множесто точек, которое интересует: к примеру "непрерывна на " или, "непрерывна на отрезке "... Тем более, что есть понятие "равномерная непрерывность" - свойство области, а не так, как "непрерывность" - свойство точки. Отсюда и непонимание. А то получается: спрашивают об области, а проверяют точку. Будут вопросы - пиши.
P.S. Исправил ошибки в наборе символов. Текста много :)
Пусть где .
Понятно, что для любого на области от (то есть: ) выполняется .
Следовательно, для , выполняется .
Получили, что для любого есть , на области которой выполняется
(Проще говоря:
). Следовательно - .
Что и требовалось доказать.
Для нужно отдельно доказать предел .
Теперь в чём проблема самого вопроса: мы только что доказали непрерывность функции на любом подмножестве . Но! Множество натуральных чисел тоже подмножество , значит тоже непрерывна, получается - доказали что непрерывна на области определения? Известно, что тоже непрерывна на области определения, но , понятное дело, не определена на !
Потому вопрос, ИМХО, поставлен не верно (претензия не к тебе, а скорее к преподавателям твоим). Правильно задать вопрос указывая то множесто точек, которое интересует: к примеру "непрерывна на " или, "непрерывна на отрезке "...
Тем более, что есть понятие "равномерная непрерывность" - свойство области, а не так, как "непрерывность" - свойство точки. Отсюда и непонимание.
А то получается: спрашивают об области, а проверяют точку.
Будут вопросы - пиши.
P.S. Исправил ошибки в наборе символов. Текста много :)
1) б) 27,36
2) б) 288,84
3) а) 133,1
б) 14,4268
в) 43,81
г) 333,52
4) в) 563,35
5) б) 0,303; 0,33; 3,003; 3,3; 33
6) а=13,675
7) г) 7,276
8) в) 0,00079
9) а) 17,7 км/час
10) б) х=10,018
Пошаговое объяснение:
1) б) 26,16+1,2=27,36
2) б) 312,54-23,7=288,84
3) а) 0,36+132,74=133,1
б) 14,663-0,2362=14,4268
в) 45-1,19=43,81
г) 331+2,52=333,52
4) 563,3541 округление до сотых
563,35
5) по возрастанию:
0,303; 0,33; 3,003; 3,3; 33
6) 14,1-а=0,425
а=14,1-0,425
а=13,675
7) г) (2,45+4,55)+0,276=7+0,276=
=7,276
8) в) 79/100000=0,00079
9) а)скорость против течения
19,3-1,6=17,7 км/час
10) б) 13,4-(х+2,312)=1,07
13,4-х-2,312=1,07
х=13,4-2,312-1,07
х=10,018