В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
DeQwert
DeQwert
28.09.2022 17:50 •  Математика

Найти ассимптоты функции y=x*arctg(x) нужно

Показать ответ
Ответ:
Hamster02
Hamster02
02.07.2020 22:11
\lim_{x \to \infty} \frac{xAtg(x)}{x}= \lim_{x \to \infty} Atg(x)= \frac{\pi}{2} \\
 \lim_{x \to \infty} xAtg(x)-\frac{\pi}{2}x =\lim_{x \to \infty} x(Atg(x)-\frac{\pi}{2})= \\
= \lim_{x \to \infty} \frac{xAtg(x)-\frac{\pi}{2}}{\frac{1}{x}}
Числитель и знаменатель непрерывно дифференциируемы на требуемой области, можем применить правило Лопиталя.
Из правила Лопиталя получаем: \frac{xAtg(x)-\frac{\pi}{2}}{\frac{1}{x}}= \lim_{x \to \infty} \frac{\frac{1}{1+x^2}}{-\frac{1}{2x^2}}= \\
= \lim_{x \to \infty} -\frac{2x^2}{1+x^2}=-2
Первая асимптота при x \to \infty будет y_1=\frac{\pi}{2}x-2

По тому-же принципу находим вторую асимптоту (расчёты подобны, потому их упускаю):
\lim_{x \to -\infty} \frac{xAtg(x)}{x}=-\frac{\pi}{2} \\
 \lim_{x \to -\infty} x(Atg(x)+ \frac{\pi}{2})=-2
Вторая асимптота при x \to -\infty будет y_2=-\frac{\pi}{2}x-2
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота