В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
katysha087
katysha087
19.05.2023 13:17 •  Математика

Найти интеграл: 1. ∫ x³dx/³√(5x⁴+2)² 2.вычислите интегралы: а). верху 1 внизу0 ∫dx/(3x+1)⁴ б).верху 1внизу 0 ∫arcsinxdx решите, нужно,с пояснением

Показать ответ
Ответ:
kashasha
kashasha
02.10.2020 16:37
1)\; \int \frac{x^3\, dx}{\sqrt[3]{(5x^4+2)^2}}=[t=5x^4+2,\; dt=20x^3\, dx\; \to \; x^3\, dx=\frac{dt}{20}\, ]=\\\\=\frac{1}{2}\int \frac{dt}{t^{\frac{2}{3}}}=\frac{1}{2}\int t^{-\frac{2}{3}}dt=\frac{1}{2}\cdot \frac{t^\frac{1}{3}}{\frac{1}{3}}+C=\frac{3}{2}\sqrt[3]{5x^4+2}+C\\\\2a)\; \int _0^1\frac{dx}{(3x+1)^4}=[\, t=3x+1,\; dt=3\, dx\; \to \; dx=\frac{dt}{3},\;\\\\ t_1=3\cdot 1+1=4\; ,\; t_2=3\cdot 0+1=1\, ]=\\\\=\frac{1}{3}\cdot \int _1^4\, t^{-4}\, dt=\frac{1}{3}\cdot \frac{t^{-3}}{-3}+C=

=-\frac{1}{9(3x+1)^3}+C\\\\2b)\; \int_0^1arcsinx\, dx=[\, u=arcsinx,\; du=\frac{dx}{\sqrt{1-x^2}},\; dv=dx,\; v=x\, ]=\\\\=x\cdot arcsinx\, |_0^1-\int _0^1\frac{x\; dx}{\sqrt{1-x^2}}=(1\cdot arcsin1-0)+\frac{1}{2}\int_0^1\frac{d(1-x^2)}{\sqrt{1-x^2}}=\\\\=\frac{\pi}{2}+\frac{1}{2}\cdot 2\sqrt{1-x^2}\, |_0^1=\frac{\pi}{2}+(0-1)=\frac{\pi}{2}-1
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота