В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
saa20
saa20
22.05.2023 09:24 •  Математика

Найти координаты единичного вектора, перпендикулярного к плоскости
A(1,-1,4), B(2,5,1), C(2,1,1).

Показать ответ
Ответ:
easyanswer
easyanswer
15.10.2020 09:31

Будем считать, что точки A(1,-1,4), B(2,5,1), C(2,1,1) даны для определения уравнения плоскости, проходящей через эти точки.

Для составления уравнения плоскости используем формулу:

x - xA y - yA z - zA

xB - xA yB - yA zB - zA

xC - xA yC - yA zC - zA

 = 0

Подставим данные и упростим выражение:

x - 1 y - (-1) z - 4

2 - 1 5 - (-1) 1 - 4

2 - 1 1 - (-1) 1 - 4

 = 0

x - 1 y - (-1) z - 4

1 6 -3

1 2 -3

 = 0

(x - 1)  (6·(-3)-(-3)·2)  -  (y - (-1))  (1·(-3)-(-3)·1)  +  (z - 4)  (1·2-6·1)  = 0

(-12) (x - 1)  + 0 (y - (-1))  + (-4) (z - 4)  = 0

 - 12x - 4z + 28 = 0.

Можно сократить на -4 и получим уравнение 3x + z - 7 = 0.

Нормальный (это перпендикулярный) вектор этой плоскости равен:

n = (3; 0 ; 1)  модуль (длина) его равна √(9+0+1) = √10.

Отсюда получаем путём нормирования единичный вектор:

n1 = ((3/√10); 0; (1/√10).

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота